首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid hormones affect cardiac growth and phenotype; however, the mechanisms by which the hormones induce cardiomyocyte hypertrophy remain uncharacterized. Tri-iodo-L-thyronine (T3) treatment of cultured cardiomyocytes for 24 h resulted in a 41 +/- 5% (p < 0.001) increase in [(3)H]leucine incorporation into total cellular protein. This response was abrogated by the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Co-immunoprecipitation studies showed a direct interaction of cytosol-localized thyroid hormone receptor TRalpha1 and the p85alpha subunit of PI3K. T3 treatment rapidly increased PI3K activity by 52 +/- 3% (p < 0.005), which resulted in increased phosphorylation of downstream kinases Akt and mammalian target of rapamycin (mTOR). This effect was abrogated by pretreatment with wortmannin or LY294002. Phosphorylation of p70(S6K), a known target of mTOR, occurred rapidly following T3 treatment and was inhibited by rapamycin and wortmannin. In contrast, phosphorylation of the p85 variant of S6K in response to T3 was not blocked by LY294002, wortmannin, or rapamycin, thus supporting a T3-activated pathway independent of PI3K and mTOR. 40 S ribosomal protein S6, a target of p70(S6K), and 4E-BP1, a target of mTOR, were both phosphorylated within 15-25 min of T3 treatment and could be inhibited by wortmannin and rapamycin. Thus, rapid T3-mediated activation of PI3K by cytosolic TRalpha1 and subsequent activation of the Akt-mTOR-S6K signaling pathway may underlie one of the mechanisms by which thyroid hormone regulates physiological cardiac growth.  相似文献   

2.
3.
Insulin-like growth factor-1 (IGF-1) both promotes survival and activates protein synthesis in neurons. In the present paper, we investigate the effect of IGF-1 treatment on cap-dependent translation in primary cultured neuronal cells. IGF-1 treatment increased the phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein 1 (4E-BP1), exclusively at Thr-36 and Thr-45 residues, and eIF-4G phosphorylation at Ser-1108. In contrast, a significant eIF-4E dephosphorylation was found. In parallel, increased eIF-4E/4G assembly and protein synthesis activation in response to IGF-1 treatment were observed. The phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the mammalian target of rapamycin (mTOR) inhibitor rapamycin, but not the mitogen-activated protein kinase (MAPK)-activating kinase (MEK) inhibitor PD98059, reversed the IGF-1-induced effects observed on eIF-4E/4G assembly and phosphorylation status of 4E-BP1, eIF-4E, and eIF-4G. Therefore, our findings show that the IGF-1-induced regulation of cap-dependent translation is largely dependent on the PI-3K and mTOR pathway in neuronal cells.  相似文献   

4.
Regulation of the PHAS-1-eukaryotic initiation factor-4E (eIF4E) complex is the rate-limiting step in the initiation of protein synthesis. This study characterized the upstream signaling pathways that mediate ANG II-dependent phosphorylation of PHAS-1 and eIF4E in vascular smooth muscle. ANG II-dependent PHAS-1 phosphorylation was maximal at 10 min (2.47 ± 0.3 fold vs. control). This effect was completely blocked by the specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase, LY-294002), mammalian target of rapamycin, and extracellular signal-regulated kinase 1/2 (ERK1/2, U-0126) or by a recombinant adenovirus encoding dominant-negative Akt. PHAS-1 phosphorylation was followed by dissociation of eIF4E. Increased ANG II-induced eIF4E phosphorylation was observed at 45 min (2.63 ± 0.5 fold vs. control), was maximal at 90 min (3.38 ± 0.3 fold vs. control), and was sustained at 2 h. This effect was blocked by inhibitors of the ERK1/2 and p38 mitogen-activated protein (MAP) kinase pathways, but not by PI3-kinase inhibition, and was dependent on PKC, intracellular Ca2+, and tyrosine kinases. Downregulation of proline-rich tyrosine kinase 2 (PYK2) by antisense oligonucleotides led to a near-complete inhibition of PHAS-1 and eIF4E phosphorylation in response to ANG II. Therefore, PYK2 represents a proximal signaling intermediate that regulates ANG II-induced vascular smooth muscle cell protein synthesis via regulation of the PHAS-1-eIF4E complex. tyrosine kinase; antisense oligonucleotides; protein synthesis  相似文献   

5.
Leucine promotes glucose uptake in skeletal muscles of rats   总被引:2,自引:0,他引:2  
Soleus muscles isolated from normal rats were incubated to evaluate whether or not leucine promotes glucose uptake under insulin-free conditions, using a labeled 2-deoxyglucose uptake assay. Glucose uptake was promoted by 2mM leucine. A metabolite of leucine, alpha-ketoisocaproic acid (alpha-KIC), also exhibited a similar stimulatory effect, although this was not as potent as leucine. Stimulation of glucose uptake by leucine was completely canceled by pre-treatment with either 10 microM LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), or 6 microM GF109203X, a specific inhibitor of protein kinase C (PKC). No significant change was observed by pre-treatment with 1 microM rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR). These results suggest that leucine stimulates glucose transport in skeletal muscle via PI3-kinase and PKC pathways independently of the mammalian target of mTOR. They also suggest that leucine stimulates glucose transport by an insulin-independent mechanism.  相似文献   

6.
In the medullary thick ascending limb, inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with nerve growth factor (NGF) induces actin cytoskeleton remodeling that secondarily inhibits apical NHE3 and transepithelial HCO(3)(-) absorption. The inhibition by NGF is mediated 50% through activation of extracellular signal-regulated kinase (ERK). Here we examined the signaling pathway responsible for the remainder of the NGF-induced inhibition. Inhibition of HCO(3)(-) absorption was reduced 45% by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 and 50% by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), a downstream effector of PI3K. The combination of a PI3K inhibitor plus rapamycin did not cause a further reduction in the inhibition by NGF. In contrast, the combination of a PI3K inhibitor plus the MEK/ERK inhibitor U0126 completely eliminated inhibition by NGF. Rapamycin decreased NGF-induced inhibition of basolateral NHE1 by 45%. NGF induced a 2-fold increase in phosphorylation of Akt, a PI3K target linked to mTOR activation, and a 2.2-fold increase in the activity of p70 S6 kinase, a downstream effector of mTOR. p70 S6 kinase activation was blocked by wortmannin and rapamycin, consistent with PI3K, mTOR, and p70 S6 kinase in a linear pathway. Rapamycin-sensitive inhibition of NHE1 by NGF was associated with an increased level of phosphorylated mTOR in the basolateral membrane domain. These findings indicate that NGF inhibits HCO(3)(-) absorption in the medullary thick ascending limb through the parallel activation of PI3K-mTOR and ERK signaling pathways, which converge to inhibit NHE1. The results identify a role for mTOR in the regulation of Na(+)/H(+) exchange activity and implicate NHE1 as a possible downstream effector contributing to mTOR's effects on cell growth, proliferation, survival, and tumorigenesis.  相似文献   

7.
8.
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflammatory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagellin-induced inflammatory response is unknown. The purpose of this study was to examine the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine expression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degradation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus, the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin. Rapamycin is potential therapy that can regulate host defense against pathogenic infections.  相似文献   

9.
10.
The class 1(A) phosphatidylinositol 3-kinase enzymes consist of a number of heterodimeric complexes of regulatory and catalytic subunits and have been implicated in a number of cellular responses. While platelet-derived growth factor (PDGF)-induced chemotaxis of human vascular smooth muscle cells (HVSMC) is inhibited by both wortmannin and LY294002, DNA synthesis is only inhibited by LY294002. Serum-induced DNA synthesis however is inhibited by LY294002, wortmannin and rapamycin. Similarly PDGF-induced protein kinase B (PKB) activation is inhibited by LY294002 but not by wortmannin or rapamycin. In conclusion PDGF-induced DNA synthesis appears to occur through a phosphatidylinositol 3-kinase (PI3-K)-dependent, but wortmannin-insensitive, PKB/Akt pathway.  相似文献   

11.
12.
Tesseraud S  Bigot K  Taouis M 《FEBS letters》2003,540(1-3):176-180
The regulation of S6K1 by nutritional status and insulin has been recently reported in vivo in chicken muscle despite the relative insulin resistance of this tissue as estimated by phosphatidylinositol 3-kinase (PI3-kinase) activity. The present work aimed to study the impact of amino acids on S6K1 activity in quail muscle (QM7) myoblasts. Firstly, we characterized S6K1 in QM7 cells and demonstrated the absence of insulin receptors in these cells. Secondly, we showed that amino acids in the absence of insulin induced S6K1 phosphorylation on Thr389 and concomitantly increased its enzymatic activity. Amino acid-induced S6K1 activation was inhibited by LY294002 (PI3-kinase inhibitor) and rapamycin (inhibitor of the mammalian target of rapamycin, mTOR), suggesting the involvement of an avian homolog of mTOR. The availability of individual amino acids (methionine or leucine) regulated S6K1 phosphorylation on Thr389 and QM7 protein synthesis. In conclusion, amino acids regulate S6K1 phosphorylation and activity in QM7 cells through the mTOR/PI3-kinase pathway in an insulin-independent manner.  相似文献   

13.
14.
15.
The ATP-binding cassette (ABC) transporter ABCG2 plays an important role in tissue detoxification and confers multidrug resistance to cancer cells. Identification of expressional and functional cellular regulators of this multidrug transporter is therefore intensively pursued. The PI3-kinase/Akt signaling axis has been implicated as a key element in regulating various cellular functions, including the expression and plasma membrane localization of ABCG2. Here we demonstrate that besides inhibiting their respective target kinases, the pharmacological PI3-kinase inhibitor LY294002 and the downstream mTOR kinase inhibitor rapamycin also directly inhibit ABCG2 function. In contrast, wortmannin, another commonly used pharmacological inhibitor of PI3-kinase does not interact with the transporter. We suggest that direct functional modulation of ABCG2 should be taken into consideration when pharmacological agents are applied to dissect the specific role of PI3-kinase/Akt/mTOR signaling in cellular functions.  相似文献   

16.
To identify the TLR4-initiated signaling events that couple to formyl peptide receptor (FPR)1 mRNA stabilization, macrophages were treated with LPS along with a selection of compounds targeting several known signaling pathways. Although inhibitors of protein tyrosine kinases, MAPKs, and stress-activated kinases had little or no effect on the response to LPS, LY294002 (LY2) and parthenolide (an IkappaB kinase inhibitor) were both potent inhibitors. LY2 but not parthenolide blocked the LPS-induced stabilization of FPR1 mRNA. Although both LY2 and wortmannin effectively blocked PI3K activity, wortmannin had little effect on FPR1 expression and did not modulate the decay of FPR1 mRNA. Moreover, although LY2 was demonstrated to be a potent inhibitor of PI3K activity, a structural analog of LY2, LY303511 (LY3), which did not inhibit PI3K, was equally effective at preventing LPS-stimulated FPR1 expression. The mammalian target of rapamycin activity (measured as phospho-p70S6 kinase) was activated by LPS but not significantly blocked by LY2. In addition, although rapamycin blocked mTOR activity, it did not inhibit FPR1 mRNA expression. Finally, the mechanisms involved in stabilization of FPR1 by LPS could be distinguished from those involved in stabilization of AU-rich mRNAs because the prolonged half-life of FPR1 mRNA was insensitive to the inhibition of p38 MAPK. These findings demonstrate that LY2/LY3 targets a novel TLR4-linked signaling pathway that selectively couples to the stabilization of FPR1 mRNA.  相似文献   

17.
We previously showed that tumor necrosis factor-alpha (TNF-alpha) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3-kinase)/protein kinase B (Akt) is involved in TNF-alpha-stimulated IL-6 synthesis in MC3T3-E1 cells. TNF-alpha induced the phosphorylation of Akt depending upon time. Akt inhibitor, 1L-6-hydroxymethyl- CHIRO-inositol 2-( R)-2- O-methyl-3- O-octadecylcarbonate, significantly suppressed the TNF-alpha-stimulated IL-6 synthesis, but the inhibitory effect was partial. The phosphorylation of Akt induced by TNF-alpha was markedly attenuated by LY294002 and wortmannin, inhibitors of PI3-kinase. Wortmannin and LY294002 significantly reduce the TNF-alpha-induced IL-6 synthesis. On the contrary, the suppressive effects of Akt inhibitor, wortmannin or LY294002 on TNF-alpha-induced phosphorylation of p44/p42 MAP kinase were minor. PD98059, a specific inhibitor of MEK, had little effect on the TNF-alpha-induced phosphorylation of Akt. A combination of Akt inhibitor and PD98059 suppressed the TNF-alpha-induced IL-6 synthesis in an additive manner. These results strongly suggest that PI3-kinase/Akt plays a role in the TNF-alpha-stimulated IL-6 synthesis mainly independent of p44/p42 MAP kinase in osteoblasts.  相似文献   

18.
Studies on a platelet-derived growth factor (PDGF) responsive osteosarcoma cell line, MG-63, were initiated to determine the effects of phosphatidylinositol (Ptdlns) 3-kinase inhibitors on serum-stimulated cell proliferation and PDGF-stimulated DNA replication, actin rearrangements, or Ptdlns 3-kinase activity. In a dose-dependent manner, the fungal metabolite wortmannin and a quercetin derivative, LY294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), inhibited serum-stimulated MG-63 cell proliferation. The mitogenic effects of PDGF on MG-63 cells, as determined by incorporation of [3H]-thymidine, were also substantially inhibited in the presence of 0.10 μM wortmannin or 10 μM LY294002. Furthermore, MG-63 cells stimulated by PDGF form distinct actin-rich, finger-like membrane projections which are completely inhibited by either 0.10 μM wortmannin or 10 μM LY294002. At these same concentrations, wortmannin and LY294002 were also effective at reducing levels of phosphatidylinositol 3-phosphate in PDGF-stimulated MG-63 cells. Treatment of these cells with increasing concentrations of wortmannin reduced the level of PDGF stimulated tyrosine phosphorylation of the PDGF receptor but did not significantly affect the amount of the Ptdlns 3-kinase regulatory subunit, p85, associated with the receptor. Additionally, pretreatment of cells with 0.250 μM wortmannin followed by stimulation with PDGF resulted in a slightly reduced level of receptor autokinase activity; however, similar treatment with 50 μM LY294002 did not affect the level of autokinase activity. These results demonstrate the effects of two different Ptdlns 3-kinase inhibitors on serum- and PDGF-stimulated MG-63 cell proliferation and PDGF-stimulated morphological changes and suggest a greater role for Ptdlns 3-kinase in these processes. J. Cell. Biochem. 64:182–195. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Phosphatidylinositol (PI) 3-kinase is required for G1 to S phase cell cycle progression stimulated by a variety of growth factors and is implicated in the activation of several downstream effectors, including p70S6K. However, the molecular mechanisms by which PI 3-kinase is engaged in activation of the cell cycle machinery are not well understood. Here we report that the expression of a dominant negative (DN) form of either the p110α catalytic or the p85 regulatory subunit of heterodimeric PI 3-kinase strongly inhibited epidermal growth factor (EGF)-induced upregulation of cyclin D1 protein in NIH 3T3(M17) fibroblasts. The PI 3-kinase inhibitors LY294002 and wortmannin completely abrogated increases in both mRNA and protein levels of cyclin D1 and phosphorylation of pRb, inducing G1 arrest in EGF-stimulated cells. By contrast, rapamycin, which potently suppressed p70S6K activity throughout the G1 phase, had little inhibitory effect, if any, on either of these events. PI 3-kinase, but not rapamycin-sensitive pathways, was also indispensable for upregulation of cyclin D1 mRNA and protein by other mitogens in NIH 3T3 (M17) cells and in wild-type NIH 3T3 cells as well. We also found that an enforced expression of wild-type p110 was sufficient to induce cyclin D1 protein expression in growth factor-deprived NIH 3T3(M17) cells. The p110 induction of cyclin D1 in quiescent cells was strongly inhibited by coexpression of either of the PI 3-kinase DN forms, and by LY294002, but was independent of the Ras-MEK-ERK pathway. Unlike mitogen stimulation, the p110 induction of cyclin D1 was sensitive to rapamycin. These results indicate that the catalytic activity of PI 3-kinase is necessary, and could also be sufficient, for upregulation of cyclin D1, with mTOR signaling being differentially required depending upon cellular conditions.  相似文献   

20.
Signaling through the mammalian target of rapamycin (mTOR) is hyperactivated in many human tumors, including hamartomas associated with tuberous sclerosis complex (TSC). Several small molecules such as LY294002 inhibit mTOR kinase activity, but they also inhibit phosphatidylinositol 3-kinase (PI3K) at similar concentrations. Compound 401 is a synthetic inhibitor of DNA-dependent protein kinase (DNA-PK) that also targets mTOR but not PI3K in vitro (Griffin, R. J., Fontana, G., Golding, B. T., Guiard, S., Hardcastle, I. R., Leahy, J. J., Martin, N., Richardson, C., Rigoreau, L., Stockley, M., and Smith, G. C. (2005) J. Med. Chem. 48, 569-585). We used 401 to test the cellular effect of mTOR inhibition without the complicating side effects on PI3K. Treatment of cells with 401 blocked the phosphorylation of sites modified by mTOR-Raptor and mTOR-Rictor complexes (ribosomal protein S6 kinase 1 Thr(389) and Akt Ser(473), respectively). By contrast, there was no direct inhibition of Akt Thr(308) phosphorylation, which is dependent on PI3K. Similar effects were also observed in cells that lack DNA-PK. The proliferation of TSC1-/- fibroblasts was inhibited in the presence of 401, but TSC1+/+ cells were resistant. In contrast to rapamycin, long-term treatment of TSC1-/- cells with 401 did not up-regulate phospho-Akt Ser(473). Because increased Akt activity promotes survival, this may explain why the level of apoptosis was increased in the presence of 401 but not rapamycin. These results suggest that mTOR kinase inhibitors might be more effective than rapamycins in controlling the growth of TSC hamartomas and other tumors that depend on elevated mTOR activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号