首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylation and carbamylation of human gamma-crystallins   总被引:4,自引:0,他引:4  
Accessible sulfhydryls of cysteine residues are likely sites of reaction in long-lived proteins such as human lens crystallins. Disulfide bonding between cysteines is a major contributor to intermolecular cross-linking and aggregation of crystallins. A recently reported modification of gammaS-crystallins, S-methylation of cysteine residues, can prevent disulfide formation. The aim of this study was to determine whether cysteines in gammaC-, gammaD-, and gammaB-crystallins are also S-methylated. Our data show that all the gamma-crystallins are S-methylated, but only at specific cysteines. In gammaD-crystallin, methylation is exclusively at Cys 110, whereas in gammaC- and gammaB-crystallins, the principal methylation site is Cys 22 with minor methylation at Cys 79. gammaD-crystallin is the most heavily methylated gamma-crystallin. gammaD-Crystallins from adult lenses are 37%-70% methylated, whereas gammaC and gammaB are approximately 12% methylated. The specificity of gamma-crystallin methylation and its occurrence in young clear lenses supports the idea that inhibition of disulfide bonding by S-methylation may play a protective role against cataract. Another modification, not reported previously, is carbamylation of the N termini of gammaB-, gammaC-, gammaD-crystallins. N-terminal carbamylation is likely a developmentally related modification that does not negatively impact crystallin function.  相似文献   

2.
R P Miller  R A Farley 《Biochemistry》1990,29(6):1524-1532
Previous studies of titratable (Na+ + K+)-ATPase sulfhydryl groups have indicated the presence of one disulfide bond per mole of holoenzyme. This single disulfide cross-link was assigned to the beta subunit on the basis of the difference between the number of titrated "free" sulfhydryl groups and the total number of titrated sulfhydryl groups for each subunit [Esmann, M. (1982) Biochim. Biophys. Acta 688, 251; Kawamura, M., & Nagano, K. (1984) Biochim. Biophys. Acta 694, 27]. In the present study, beta-subunit tryptic peptides containing disulfide cross-links were identified and purified by HPLC. Two new peptides were generated from each disulfide-bonded peptide by reduction with dithiothreitol, and the amino acid compositions of these reduced peptides were determined. The data demonstrate that there are three disulfide bonds in the native beta subunit: 125Cys-148Cys, 158Cys-174Cys, and 212Cys-275Cys. The number of disulfide bonds in the beta subunit was also estimated by titration of sulfhydryl groups with [14C]iodoacetamide. Six sulfhydryl groups were identified: two sulfhydryl groups were titrated without prior reduction, and four were identified only after reduction of the protein with dithiothreitol. These data, suggesting that the beta subunit contains two disulfide bonds, are inconsistent with the peptide isolation experiments, which directly identified three disulfide bonds in the beta subunit. This inconsistency was resolved by demonstrating that approximately 20% of each disulfide bond in the beta subunit was reduced prior to the start of the experiment, resulting in an underestimation of the number of disulfide-bonded sulfhydryl groups in the beta subunit from the titration experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Recombinant human gastric lipase (rHGL) and three of its cysteine mutants (cysteine 227, 236, and 244 substitued for threonine or serine) were expressed in the baculovirus/insect cell system and purified to homogeneity by performing a two-step procedure. Substituting Ser for Cys 227 and Cys 236 resulted in mutant lipases with a significantly lower level of activity (30% and 22%, respectively) on a short chain triglyceride (tribuyrin) substrate, while the mutation at position 244 only slightly reduced the activity. Using 4, 4'-dithiopyridine (4-PDS) as a sulfhydryl reagent on the above mutants, it was possible to clearly identify the single sulfhydryl residue at position 244 and consequently, the disulfide bridge at position 227-236. No potential disulfide bridges were formed during the protein folding between cysteines 227-244 or between cysteines 236-244, as thought to occur in the case of rabbit gastric lipase (RGL). The present results are consistent with the recently determined 3D-structure of rHGL.  相似文献   

4.
A set of wild-type and mutant human, woodchuck, and duck hepatitis viral core proteins have been prepared and used to study the free thiol groups and the disulfide bonding pattern present within the core particle. Human (HBcAg) and woodchuck (WHcAg) core proteins contain 4 cysteine residues, whereas duck (DHcAg) core protein contains a single cysteine residue. Each of the cysteines of HBcAg has been eliminated, either singly or in combinations, by a two-step mutagenesis procedure. All of the proteins were shown to have very similar physical and immunochemical properties. All assemble into essentially identical core particle structures. Therefore disulfide bonds are not essential for core particle formation. No intra-chain disulfide bonds occur. Cys107 is a free thiol buried within the particle structure, whereas Cys48 is present partly as a free sulfhydryl which is exposed at the surface of the particle. Cys61 is always and Cys48 is partly involved in interchain disulfide bonds with the identical residues of another monomer, whereas Cys183 is always involved in a disulfide bond with the Cys183 of a different monomer. WHcAg has the same pattern of bonding, whereas DHcAg lacks any disulfide bonds, and the single free sulfhydryl, Cys153 which is equivalent to Cys107 of HBcAg, is buried.  相似文献   

5.
Monoclonal antibody (mAb) therapy applications have been growing rapidly in recent years. Like other recombinant protein drugs, therapeutic mAb's need to be well characterized to ensure their structural and functional integrity. IgG mAb's are composed of two heavy and two light chains covalently linked by interchain disulfide bonds. Each domain of the heavy or light chain contains one additional disulfide bond. Native IgG mAb's, with completely formed disulfide bonds, should not bear any free sulfhydryl. This report describes detection and quantification of free sulfhydryl in recombinant mAb's produced in Chinese hamster ovary (CHO) cells using a fluorescent technique. The method utilizes the fluorescent probe N-(1-pyrenyl)maleimide (NPM). The purified mAb's appear to be homogeneous under native conditions with approximately 0.02 mol of free sulfhydryl per mole of protein. Upon denaturation, minor species related to the mAb's are observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the free sulfhydryl level is determined to be approximately 0.1 mol/mol of protein. These results suggest that a small portion of these recombinant mAb's lack in intermolecular disulfide bonds but remain noncovalently associated under native conditions. The formation of the free sulfhydryl containing mAb species is likely to occur during the culture process and/or protein folding process in the endoplasmic reticulum (ER).  相似文献   

6.
We have produced human fibrinogen gamma 259-411 in Escherichia coli in order to study the relationship between the calcium binding activity of the polypeptide and the integrity of the disulfide bond cysteine326-cysteine339. The polypeptide was produced from a plasmid expression vector at approximately 5 micrograms per milliliter of bacterial culture. The identity of the polypeptide was confirmed by N-terminal amino acid sequence analysis. The expression vector was modified by oligonucleotide directed mutagenesis to remove the nucleotides encoding cysteines gamma 326 and gamma 339. The calcium binding activity of wild-type and altered polypeptides were compared using a solid phase assay. Our results indicate that removal of the two cysteine residues had no appreciable effect on calcium binding activity. We conclude that the integrity of the disulfide bond cysteine326-cysteine339 is not critical for calcium binding to gamma 259-411.  相似文献   

7.
Rat liver methionine adenosyltransferase incorporated 8 mol of N-ethylmaleimide per mol of subunit upon denaturation in the presence of 8 M urea, whereas 10 such groups were labelled when dithiothreitol was also included. This observation prompted a re-examination of the state of the thiol groups, which was carried out using peptide mapping, amino acid analysis and N-terminal sequencing. The results obtained revealed a disulfide bridge between Cys35 and Cys61. This disulfide did not appear to be conserved because cysteines homologous to residue 61 do not exist in methionine adenosyltransferases of other origins, therefore suggesting its importance for the differential aspects of the liver-specific enzyme.  相似文献   

8.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

9.
The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (E(m)) value of -165mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, E(m) value of -220mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8? resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.  相似文献   

10.
Chemical cross-linking of proteins in combination with mass spectrometric analysis of the reaction products has gained renewed interest as a method of obtaining distance constraints within a protein and determining a low-resolution three-dimensional structure. We present a method for identifying spatially close sulfhydryl groups in proteins employing chemical cross-linking with the fluorogenic, homobifunctional cross-linker dibromobimane, which cross-links thiol pairs within approximately 3-6A. The applicability of our strategy was demonstrated by cross-linking the sulfhydryl groups of Cys-18 and Cys-78 in gamma-crystallin F, which are within a distance of 3.57A according to the X-ray structure. Intramolecularly cross-linked gamma-crystallin was first separated from reaction side products by reversed-phase chromatography on a C-4 column. Subsequently, the fraction containing the reacted protein was enzymatically digested with trypsin, and the resulting peptide mixture was separated by a second reversed-phase chromatographic step on a C-18 column, in which the cross-linked peptides were tracked by their fluorescence. The cross-linking product between Cys-18 and Cys-78 in gamma-crystallin F was identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. This strategy presents a rapid method for mapping sulfhydryl groups separated by a distance of approximately 3-6A within a protein.  相似文献   

11.
12.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

13.
By using site-directed mutagenesis techniques, the essential amino acids at the catalytic center of porcine thioltransferase (glutaredoxin) were determined. Seven oligonucleotides were designed, synthesized, and used to construct mutants, ETT-C22S, ETT-C25S, ETT-C25A, ETT-R26V, ETT-K27Q, ETT-R26V: K27Q, and ETT-C78S:C82S, by altering their codons in pig liver thioltransferase cDNA/M13mp18 clones. Each of the thioltransferases was purified to homogeneity and its dithiol-disulfide exchange, and dehydroascorbate reductase activities were compared with those of the wild-type (ETT). Evidence was obtained that Cys22 was essential for catalytic activity, and the extremely low pKa value of its sulfhydryl group was facilitated primarily by Arg26. The role of Lys27 at the active center was different from that of Arg26 and may be important in stabilizing the E.S intermediate by electrostatic forces. The second pair of cysteines, Cys78 and Cys82, nearer the C terminus, were not directly involved in the active center, but may play a role in defining the native protein structure. The replacement of the original Cys with a Ser at position 25 increased rather than decreased the enzyme activity, suggesting that the proposed intramolecular disulfide bond between Cys22 and Cys25 is not necessary for the catalytic mechanism of the Ser25 mutant, but does not rule out such a mechanism for the wild-type enzyme.  相似文献   

14.
A molecule of the major blood protein albumin contains 34 cysteine residues involved in disulfide bonds and one unpaired SH-group of residue Cys34. Normally, 20–30% of these SH-groups are oxidized and form disulfide bonds or the derivatives of sulfenic, sulfinic, and sulfonic acids. The goal of the present work was to study the influence of the degree of oxidation of sulfhydryl groups on the capacity of albumin for glycation. Commercially available human albumin containing 0.4 moles of sulfhydryl groups per 1 mole of the protein (nonmercaptalbumin) was used. Disulfide bonds in this preparation were reduced with dithiothreitol to 0.7 mole/mole to give mercaptalbumin. The preparations were incubated for three weeks with glucose at a concentration of 5 and 50 mM. The content of ketoamine, a glycation product, was determined by the colorimetric method, the content of pentosidine (glycation end product) was analyzed by fluorescence, and the content of SH-groups was determined using the Ellman’s reagent. Changes in the structure and properties of the protein during glycation were studied by fluorescence and HPLC. During the incubation of both albumin preparations with 5 mM glucose, no significant increase in the ketoamine content was observed, whereas the incubation with 50 mM glucose was accompanied by a considerable accumulation of ketoamine. It was found that the greatest amount of ketoamine under these conditions forms in nonmercaptalbumin; in this case, the intensity of tryptophan fluorescence decreases. The intensity of pentosidine fluorescence increases with increasing content of ketoamine. The results obtained enable the conclusion that the oxidation of free SH-groups of the protein changes its conformation; as a result, the glycation of earlier hidden sites becomes possible, and the degree of protein glycation increases.  相似文献   

15.
Nonnative disulfide bond formation can play a critical role in the assembly of disulfide bonded proteins. During the folding and assembly of the P22 tailspike protein, nonnative disulfide bonds form both in vivo and in vitro. However, the mechanism and identity of cysteine disulfide pairs remains elusive, particularly for P22 tailspike, which contains no disulfide bonds in its native, functional form. Understanding the interactions between cysteine residues is important for developing a mechanistic model for the role of nonnative cysteines in P22 tailspike assembly. Prior in vivo studies have suggested that cysteines 496, 613, and 635 are the most likely site for sulfhydryl reactivity. Here we demonstrate that these three cysteines are critical for efficient assembly of tailspike trimers, and that interactions between cysteine pairs lead to productive assembly of native tailspike.  相似文献   

16.
Membrane-bound immunoglobulins have, in addition to the transmembrane and cytoplasmic portions, an extracellular membrane-proximal domain (EMPD), absent in the secretory forms. EMPDs of immunoglobulin isotypes alpha, gamma, and epsilon contain cysteines whose role has so far not been elucidated. Using a genetic strategy, we investigated the ability of these cysteines to form disulfide bridges. Shortened versions of human membrane immunoglobulins, depleted of cysteines known to form intermolecular disulfide bonds, were constructed and expressed on the surface of a B-cell line. The resulting membrane proteins contain a single chain fragment of variable regions (scFv) linked to the dimerizing domain from the immunoglobulin heavy chains (CH3 for alpha and gamma or CH4 for epsilon isotypes), followed by the corresponding EMPD and the transmembrane and cytoplasmic domains. The two functional membrane versions of the epsilon chain, containing the short and long EMPD, were analyzed. Our results show that the single cysteine within alpha1L and gamma1 EMPD and the short version of epsilon EMPD form an interchain disulfide bond. Conversely, the cysteine resident in the epsilon transmembrane domain remains unreacted. epsilon-long EMPD contains four cysteines; two are involved in interchain bonds while the remaining two are likely forming an intrachain bridge. Expression of a full-length membrane epsilon heavy chain mutant, in which Cys(121) and Cys(209) within domain CH2 (involved in interchain bridges) were mutated to alanines, confirmed that, within the complete IgE, EMPD cysteines form interchain disulfide bonds. In conclusion, we unveil evidence for additional covalent stabilization of membrane-bound immunoglobulins.  相似文献   

17.
In the present communication design, synthesis and DNA binding activities of three bis-netropsins and two netropsin analogs containing two N-propylpyrrolecarboxamide fragments linked covalently to peptides Gly-Gly-(analog I) and Val-Val-Val-Gly-Gly-(analog II) are reported. Each bis-netropsin consists of two netropsin-like fragments attached to peptides -Gly-Cys-Gly-NH2 (compound IIIa), H-Gly-Cys-Gly-Gly-Gly-(compound IV) or Gly-Cys-Sar-NH2 (compound IIIb) which are linked symmetrically via S-S bonds. Physico-chemical studies show that each bis-netropsin carries 6 AT-specific reaction centers and covers approximately 10 base pairs upon binding to poly(dA).poly(dT). This indicates that two netropsin-like fragments of the bis-netropsin molecule are implicated in specific interaction with DNA base pairs. The peptide fragments of bis-netropsins IIIa and IV form small beta-sheets containing two-GC-specific reaction centers. The DNase I cleavage patterns of bis-netropsin-DNA complexes visualized by high resolution gel electrophoresis show that the preferred binding sites for bis-netropsins IIIa and IV are identical and contain two runs of three or more AT pairs separated by two GC pairs. Specificity determinants of netropsin analog II binding in the beta-associated dimeric form are identical to those of bis-netropsin IIIa thereby indicating that there is a similarity in the structure of complexes formed by these ligands with DNA. In the monomeric form analog II exhibits binding specificity identical to that of analog I. Replacement of C-terminal glycine residues by sarcosines in the peptide fragments of bis-netropsin IIIa leads to a decrease in the affinity of ligand for DNA.  相似文献   

18.
The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (Em) value of − 165 mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, Em value of − 220 mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8 Å resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.  相似文献   

19.
Ai LS  Liao F 《Biochemistry》2002,41(26):8332-8341
CCR6 is the receptor for the chemokine MIP-3 alpha/CCL20. Almost all chemokine receptors contain cysteine residues in the N-terminal domain and in the first, second, and third extracellular loops. In this report, we have studied the importance of all cysteine residues in the CCR6 sequence using site-directed mutagenesis and biochemical techniques. Like all G protein-coupled receptors, mutating disulfide bond-forming cysteines in the first (Cys118) and second (Cys197) extracellular loops in CCR6 led to complete elimination of receptor activity, which for CCR6 was also associated with the accumulation of the receptor intracellularly. Although two additional cysteines in the N-terminal region and the third extracellular loop, which are present in almost all chemokine receptors, are presumed to form a disulfide bond, this has not been demonstrated experimentally for any of these receptors. We found that mutating the cysteines in the N-terminal domain (Cys36) and the third extracellular loop (Cys288) neither significantly affected receptor surface expression nor completely abolished receptor function. Importantly, contrary to several previous reports, we demonstrated directly that instead of forming a disulfide bond, the N-terminal cysteine (Cys36) and the third extracellular loop cysteine (Cys288) contain free SH groups. The cysteine residues (Cys36 and Cys288), rather than forming a disulfide bond, may be important per se. We propose that CCR6 forms only a disulfide bond between the first (Cys118) and second (Cys197) extracellular loops, which confines a helical bundle together with the N-terminus adjacent to the third extracellular loop, creating the structural organization critical for ligand binding and therefore for receptor signaling.  相似文献   

20.
Part of the dimer and B/C domain interface of the Escherichia coli mannitol permease (EII(mtl)) has been identified by the generation of disulfide bridges in a single-cysteine EII(mtl), with only the activity linked Cys(384) in the B domain, and in a double-cysteine EII(mtl) with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)(3), and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EII(mtl) was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys(384)-Cys(384), an intersubunit Cys(124)-Cys(124), an intersubunit Cys(384)-Cys(124), and an intrasubunit Cys(384)-Cys(124). The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys(384) and Cys(124). The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)(3) or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号