首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The kinetic properties of 6-phosphofructo-1-kinase (PFK) from skeletal muscle (PFKM) of gilthead sea bream (Sparus aurata) were studied, after 10,900-fold purification to homogeneity. The native enzyme had an apparent molecular mass of 662 kDa and is composed of 81 kDa subunits, suggesting a homooctameric structure. At physiological pH, S. aurata PFKM exhibited sigmoidal kinetics for the substrates, fructose-6-phosphate (fru-6-P) and ATP. Fructose-2,6-bisphosphate (fru-2,6-P(2)) converted the saturation curves for fru-6-P to hyperbolic, activated PFKM synergistically with other positive effectors of the enzyme such as AMP and ADP, and counteracted ATP and citrate inhibition. The fish enzyme showed differences regarding other animal PFKs: it is active as a homooctamer, and fru-2,6-P(2) and pH affected affinity for ATP. By monitoring incorporation of (32)P from ATP, we show that fish PFKM is a substrate for the cAMP-dependent protein kinase. The mechanism involved in PFKM activation by phosphorylation contrasts with previous observations in other species: it increased V(max) and did not affect affinity for fru-6-P. Unlike the mammalian muscle enzyme, our findings support that phosphorylation of PFKM may exert a major role during starvation in fish muscle.  相似文献   

2.
The phosphofructokinase (PFK) of Bacillus licheniformis was purified about 50–65-fold and examined for a number of enzymatic and physical characteristics. The enzyme is quite unstable under normal assay conditions, but Mg2+, K+, adenosine-5′-diphosphate, phosphoenolpyruvate (PEP), and fructose-6-phosphate (fru-6-P) are fairly effective stabilizing agents. Saturation functions for ATP and fru-6-P were hyperbolic. Several attempts to induce positive cooperative binding of fru-6-P were unsuccessful. However, “sigmoidal” saturation kinetics for fru-6-P could be observed under assay conditions that permitted an irreversible inactivation of the PFK during assay. Several divalent cations could support the catalysis of B. licheniformis PFK and the enzyme was activated by both NH4+ and K+ ions. B. licheniformis PFK is inhibited by citrate, ATP, PEP, Ca2+, and several other metabolic intermediates, but the inhibition caused by citrate and ATP at high fru-6-P concentration and by calcium can be relieved by Mg2+ addition while PEP inhibition is specifically relieved by fru-6-P. There are at least three binding sites for PEP on the PFK molecule. The active form of this PFK has a molecular weight of about 134,000 daltons. In the presence of Mg2+, adenosine-5′-triphosphate (ATP), and PEP, at 0 °C, the PFK molecule is rapidly dissociated to an inactive form with a molecular weight of about 68,000 daltons. Association of these subunits to yield the active form of PFK occurs spontaneously, and rapidly, when the temperature is raised to 30 °C. Ninety percent of the original activity is recovered after activation. Growth of B. licheniformis on several different substrates resulted in minor variations of PFK activity. In a parallel fashion, sporulation involved no irreversible inactivation of PFK and the level of the activity was about the same throughout the life cycle. Control of this enzyme during sporulation could be affected by any or all of the cell constituents found to regulate PFK activity in vitro, but it is considered likely that the most significant in vivo negative effector is PEP, with this inhibition being reversed by fru-6-P.  相似文献   

3.
1. Fructose 2,6-bisphosphate (fru-2,6-P2) has been measured in liver and muscle of gilthead sea bream fish, Sparus aurata. 2. The fru-2,6-P2 levels in liver depend on the diet given to the fish: in fish fed a high carbohydrate diet, the fru-2,6-P2 levels are higher than any one previously reported. These changes are associated with differences in the phosphofructokinase 2 activity. 3. Fru-2,6-P2 levels has also been measured in liver of Sparus aurata after different fasting periods. In starved fish, fru-2,6-P2 did not decrease as sharply as in rat. The values found in fish starved for 20 days were similar to those reported for rats that had been starved for 24 hr.  相似文献   

4.
1. Phosphofructokinase (PFK) was purified from bovine parotid gland to 750-fold with the specific activity of 67.5 units/mg protein by Cibacron Blue F3GA affinity chromatography, and TSK DEAE-5PW ion-exchange and TSK G4000SW size exclusion chromatographies on HPLC. 2. On gel-filtration, molecular weight of the native PFK was estimated to 400,000. 3. PFK was a heterotetramer composed of three kinds of subunit with molecular weights of 92,000 (C-type), 88,000 (M-type) and 86,000 (L-type), by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Densitometrically, relative amounts of C-, M- and L-type subunit were 1:1:2. 4. Under the physiological conditions of fructose 6-phosphate (Fru-6-P) and ATP concentrations and pH, PFK activity was suppressed and hardly detectable. 5. Fru-6-P relieved PFK from the ATP inhibition. 6. Fructose 2,6-bisphosphate (Fru-2,6-P2) and AMP activated PFK with a reduction of S0.5 for Fru-6-P and subunit cooperativity. Fru-2,6-P2 was more effective than AMP.  相似文献   

5.
The kinetics of yeast phosphofructo-1-kinase has been studied in vitro. Effector concentrations (Fru-6-P, ATP, ADP, AMP, Pi, Fru-1,6-P2, and Fru-2,6-P2) and pH were adjusted so as to mimic intracellular concentrations in yeast. Under these conditions we were able to reproduce the measured in vivo rate of PFK. In addition, by reconstituting the intracellular conditions existing during aerobic and anaerobic glycolysis, we were able to reproduce in vitro the changes in the rate of PFK observed under these conditions. Without the addition of the newly discovered effector Fru-2,6-P2, in vitro rates of PFK are much lower than its in vivo rate. Changes in Fru-2,6-P2, Fru-1,6-P2, ATP, AMP, Pi, and pH in going from aerobic to anaerobic conditions all contributed somewhat to the change in the rate of PFK observed during the Pasteur effect, with no contribution coming from ADP. These studies show that the control of PFK under the condition of the Pasteur effect cannot be ascribed to changes in any one particular effector but rather to contributions from a variety of effectors. Also, the net change in the rate of PFK in the switch from anaerobic to aerobic glycolysis is small compared with the change in its dependence upon its substrate Fru-6-P, indicating a compensation mechanism.  相似文献   

6.
《Insect Biochemistry》1990,20(5):443-449
The fine structure of the mid-gut of Poekilocerus bufonius has been examined and three types of epithelial cells were identified; normal epithelial cells with their apical part possessing well developed microvilli, goblet-like cells containing myelin-like figures and the small basal cells with small and round nuclei, nidi. The regulation of 6-phosphofructo-1-kinase (PFK-1) prepared from the mid-gut of the grasshopper, Poekilocerus bufonius, was studied. Mid-gut PFK-1 displayed cooperativity with respect to fructose-6-phosphate at pH 7.0, and the enzyme was inhibited by high concentrations of ATP. The affinity of the enzyme for fructose-6-phosphate was increased by fru-2,6-P2 whereas the inhibition of the enzyme by high concentrations of ATP was relieved by fru-2,6-P2. The activity of mid-gut PFK-1 was highly stimulated in a simultaneous presence of low concentrations of fru-2,6-P2 and AMP. ADP, AMP and c-AMP were all shown to be activators of the mid-gut PFK-1 with AMP being the greatest effector. The enzyme was not inhibited by citrate either in the presence of low or high concentrations of ATP. These results suggest that the PFK-1 of the mid-gut of the grasshopper is highly regulated with positive stimulators, specially fru-2,6-P2, whereas the enzyme is not regulated by citrate or glucose-1,6-bisphosphate.  相似文献   

7.
With a view to investigating the role of the enzyme pyrophosphate-fructose-6-phosphate-1-phosphotransferase (PFP) in sucrose breakdown in developing endosperm of wheat grain, the activity of PFP and related enzymes such as phosphofructokinase (PFK), fructose-6-bisphosphatase (FBPase), fructose-6-phosphate-2-kinase (PFK-2) and fructose-2,6-bisphosphatase (F2, 6-P2ase) and the contents of the various intermediates of the pathway serving either the substrate or the effectors of these enzymes such as glu-6-P,glu-1-P,fru-6-P,fru-1,6-P2,DHAP,G3P, UDP-glucose, ADP-glucose, Pi,PPi and fru-2,6-P2 have been determined at 5 days intervals starting from day-5 after anthesis until day-40 after anthesis. These enzymes except PFK-2 had their peak activity at day-25 after anthesis. The activity of PFP was several fold higher than that of PFK at each stage of grain development. PFK-2 exhibited the lowest activity. The various intermediates again had their maximum concentration either at day-20 or day-25 after anthesis. Among hexose phosphates studied, glu-6-P was present in highest concentration at each stage of grain development. The level of Pi was much higher than those of PPi and fru-2,6-P2. Similarly, concentration of UDP-glucose was higher than that of ADP-glucose. Based on these results, it is proposed that the major role of the enzyme PFP in developing wheat grain is to provide PPi for sucrose breakdown via sucrose synthase.  相似文献   

8.
The kinetic properties of phosphofructokinase from muscle of the giant cirripede Austromegabalanus psittacus were characterized, after partial purification by ion exchange chromatography on DEAE-cellulose. This enzyme showed differences regarding PFKs from other marine invertebrates: the affinity for fructose 6-phosphate (Fru 6-P) was very low, with an S(0.5) of 22.6+/-1.4 mM (mean+/-S.D., n=3), and a high cooperativity (n(H) of 2.90+/-0.21; mean+/-S.D., n=3). The barnacle PFK showed hyperbolic saturation kinetics for ATP (apparent K(m ATP)=70 microM, at 5 mM Fru 6-P, in the presence of 2 mM ammonium sulfate). ATP concentrations higher than 1 mM inhibited the enzyme. Ammonium sulfate activated the PFK several folds, increasing the affinity of the enzyme for Fru 6-P and V(max). 5'-AMP (0.2 mM) increased the affinity for Fru 6-P (S(0.5) of 6.2 mM). Fructose 2,6-bisphosphate activated the PFK, with a maximal activation at concentrations higher than 2 microM. Citrate reverted the activation of PFK produced by 0.2 mM 5'-AMP (IC(50 citrate)=2.0 mM), producing a higher inhibition than that exerted on other invertebrate PFKs. Barnacle muscular PFK was activated in vitro after exposure to exogenous cyclic-AMP (0.1 mM) as well as by phosphatidylserine (50 microg/ml), indicating a possible control by protein kinase A and a phospholipid dependent protein kinase (PKC). The results suggest a highly regulated enzyme in vivo, by allosteric mechanisms and also by protein phosphorylation.  相似文献   

9.
Arg252 of fructose-6-phosphate 1-kinase (PFK) from Bacillus stearothermophilus has been proposed to be involved in the binding of the substrate Fru-6-P. We demonstrate here that mutation of this residue to alanine converts the enzyme to a form with characteristics similar to those of its allosterically tight form. The mutant enzyme exhibits a high affinity for its inhibitor phosphoenolpyruvate (a 68-fold difference compared to wild type) and a dramatically decreased Fru-6-P affinity (1500-fold increase in Km). It is more sensitive to inhibition by high ATP concentrations than the wild type, and this inhibition is relieved by ADP, GDP, or higher Fru-6-P concentrations. In contrast, mutation of Arg252 to lysine increases the affinity of the enzyme for P-enolpyruvate by only 2-fold and increases its Km for Fru-6-P by only 50-fold. Sigmoidal kinetics with respect to Fru-6-P in the presence of P-enolpyruvate were observed with Hill numbers of 2.2, 2.4, and 1.7 for wild-type B. stearothermophilus PFK and the Arg252 to lysine and to alanine mutations, respectively. Unlike fructose-6-phosphate 1-kinase from Escherichia coli, in the absence of P-enolpyruvate, B. stearothermophilus PFK exhibits a hyperbolic profile with respect to Fru-6-P concentration. B. stearothermophilus PFK is sensitive to inhibition by high ATP concentrations and competitively inhibited by GDP or ADP. Our data indicate that Arg252 of B. stearothermophilus PFK plays a major role in both Fru-6-P binding and allosteric interaction between the subunits. However, this residue does not seem to participate directly in the catalytic process.  相似文献   

10.
The regulatory properties of citrate on the activity of phosphofructokinase (PFK) purified from rat-kidney cortex has been studied. Citrate produces increases in the K0.5 for Fru-6-P and in the Hill coefficient as well as a decrease in the Vmax of the reaction without affecting the kinetic parameters for ATP as substrate. ATP potentiates synergistically the effects of citrate as an inhibitor of the enzyme. Fru-2,6-P2 and AMP at concentrations equal to Ka were not able to completely prevent citrate inhibition of the enzyme. Physiological concentrations of ATP and citrate produce a strong inhibition of renal PFK suggesting that may participate in the control of glycolysisin vivo.Abbreviations PFK 6-Phosphofructo-1-kinase (EC 2.7.1.11) - Fru-6-P Fructose 6-phosphate - Fru-2,6-P2 Fructose 2,6-bisphosphate  相似文献   

11.
The effect of fructose 2,6-P2, AMP and substrates on the coordinate inhibition of FBPase and activation of PFK in swine kidney has been examined. Fructose 2,6-P2 inhibits the activity of FBPase and stimulates the activity of PFK in the presence of inhibitory concentrations of ATP. Under similar conditions 2.2 μM fructose 2,6-P2 was required for 50% inhibition of FBPase and 0.04 μM fructose 2,6-P2 restored 50% of the activity of PFK. Fructose 2,6-P2 also enhanced the allosteric activation of PFK by AMP and it increased the extent of inhibition of FBPase by AMP. Fructose 2,6-P2, AMP and fructose 6-P act cooperatively to stimulate the activity of PFK whereas the same latter two effectors and fructose 1,6-P2 inhibit the activity of FBPase. Taken collectively, these results suggest that an increase in the intracellular level of fructose 2,6-P2 during gluconeogenesis could effectively overcome the inhibition of PFK by ATP and simulataneously inactivate FBPase. When the level of fructose 2,6-P2 is low, a glycolytic state would be restored, since under these conditions PFK would be inhibited by ATP and FBPase would be active.  相似文献   

12.
Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is a potent allosteric activator of the ATP-dependent phosphofructokinase (PFK) in eukaryotes. Based on the sequence homology between rabbit muscle PFK and two bacterial PFKs and the crystal structures of the latter, Ser(530), Arg(292) and His(662) of the rabbit enzyme are implicated as binding sites for Fru-2,6-P(2). We report here the effects of three mutations, S530D, R292A, and H662A on the activation of rabbit muscle PFK by Fru-2,6-P(2). At pH 7.0 and the inhibitory concentrations of ATP, the native enzyme gives a classic sigmoidal response to changes in Fru-6-P concentration in the absence of Fru-2,6-P(2) and a nearly hyperbolic response in the presence of the activator. Under the same conditions, no activation was seen for S530D. On the other hand, H662A can be activated but requires a 10-fold or higher concentration of Fru-2,6-P(2). Limited activation was observed for mutant R292A. A model illustrating the sites for recognition of Fru-2,6-P(2) in rabbit muscle PFK as well as the mechanism of allosteric activation is proposed.  相似文献   

13.
Turner WL  Plaxton WC 《Planta》2003,217(1):113-121
Pyrophosphate-dependent phosphofructokinase (PFP; EC 2.7.1.90) and two isoforms of ATP-dependent phosphofructokinase (PFK I and PFK II; EC 2.7.1.11) from ripened banana ( Musa cavendishii L. cv. Cavendish) fruits were resolved via hydrophobic interaction fast protein liquid chromatography (FPLC), and further purified using anion-exchange and gel filtration FPLC. PFP was purified 1,158-fold to a final specific activity of 13.9 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Gel filtration FPLC and immunoblot analyses indicated that this PFP exists as a 490-kDa heterooctomer composed of equal amounts of 66- (alpha) and 60-kDa (beta) subunits. PFP displayed hyperbolic saturation kinetics for fructose 6-phosphate (Fru 6-P), PPi, fructose 1,6-bisphosphate, and Pi ( K(m) values = 32, 9.7, 25, and 410 microM, respectively) in the presence of saturating (5 microM) fructose 2,6-bisphosphate, which elicited a 24-fold enhancement of glycolytic PFP activity ( K(a)=8 nM). PFK I and PFK II were each purified about 350-fold to final specific activities of 5.5-6.0 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Analytical gel filtration yielded respective native molecular masses of 210 and 160 kDa for PFK I and PFK II. Several properties of PFK I and PFK II were consistent with their respective designation as plastid and cytosolic PFK isozymes. PFK I and PFK II exhibited: (i) pH optima of 8.0 and 7.3, respectively; (ii) hyperbolic saturation kinetics for ATP ( K(m)=34 and 21 microM, respectively); and (iii) sigmoidal saturation kinetics for Fru 6-P ( S0.5=540 and 90 microM, respectively). Allosteric effects of phospho enolpyruvate (PEP) and Pi on the activities of PFP, PFK I, and PFK II were characterized. Increasing concentrations of PEP or Pi progressively disrupted fructose 2,6-bisphosphate binding by PFP. PEP potently inhibited PFK I and to a lesser extent PFK II ( I50=2.3 and 900 microM, respectively), while Pi activated PFK I by reducing its sensitivity to PEP inhibition. Our results are consistent with: (i) the respiratory climacteric being regulated by fine (allosteric) control of pre-existing enzymes; and (ii) primary and secondary glycolytic flux control being exerted at the levels of PEP and Fru 6-P metabolism, respectively.  相似文献   

14.
Summary The involvement of phosphofructokinase (PFK) in glycolytic control was investigated in the marine peanut worm Sipunculus nudus. Different glycolytic rates prevailed at rest and during functional and environmental anaerobiosis: in active animals glycogen depletion was enhanced by a factor of 120; during hypoxic exposure the glycolytic flux increased only slightly. Determination of the mass action ratio (MAR) revealed PFK as a non-equilibrium enzyme in all three physiological situations. Duirng muscular activity the PFK reaction was shifted towards equilibrium; this might account for the observed increase in glycolytic rate under these conditions. PFK was purified from the body wall muscle of S. nudus. The enzyme was inhibited by physiological ATP concentrations and an acidic pH; adenosine monophosphate (AMP), inorganic phosphate (Pi), and fructose-2,6-bisphosphate (F-2,6-P2) served as activators. PFK activity, determined under simulated cellular conditions of rest and muscular work, agreed well with the glycolytic flux in the respective situations. However, under hypoxia PFK activity surpassed the glycolytic rate, indicating that PFK may not be rate-limiting under these conditions. The results suggest that glycolytic rate in S. nudus is mainly regulated by PFK during rest and activity. Under hypoxic conditions the regulatory function of PFK is less pronounced.Abbreviations ATP, ADP, AMP adenosine tri-, di-, monophosphate - DTT dithiothreitol - EDTA ethylene diaminetetra-acetic acid - F-6-P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate; bwm, body wall muscle; fresh mass, total body weight - G-6-P glucose-6-phosphate - H enthalpy change - K a activation constant - K eq equilibrium constant - K i inhibition constant - K m Michaelis constant - MAR mass action ratio - NMR nuclear magnetic resonance - PFK phosphofructokinase - Pi inorganic phosphate - PLA phospho-l-arginine - SD standard deviation - TRIS, TRIS (hydroxymethyl) aminomethane - TRA triethanolamine hydrochloride - V max maximal velocity  相似文献   

15.
The distribution of pyrophosphate: fructose 6-phosphate phosphotransferase (PFP) and ATP: fructose-6-phosphate 1-phosphotransferase (PFK) was studied in germinating bean (Phaseolus vulgaris cv Top Crop) seeds. In the cotyledons the PFP activity was comparable with that of PFK. However, in the plumule and radicle plus hypocotyl, PFP activity exceeds that of PFK. Approximately 70 to 90%, depending on the stage of germination, of the total PFP and PFK activities were present in the cotyledons. Highest specific activity of both enzymes, however, occurred in the radicle plus hypocotyl (64-90 nanomoles·min·milligram protein). Fractionation studies indicate that 40% of the total PFK activity was associated with the plastids while PFP is apparently confined to the cytoplasm. The cytosolic isozyme of PFK exhibits hyperbolic kinetics with respect to fructose 6-P and ATP with Km values of 320 and 46 micromolar, respectively. PFP also exhibits hyperbolic kinetics both in the presence and absence of the activator fructose-2,6-P2. The activation is caused by lowering the Km for fructose 6-P from 18 to 1.1 millimolar and that for pyrophosphate (PPi) from 40 to 25 micromolar, respectively. Levels of fructose 2,6-P2 and PPi in the seeds are sufficient to activate PFP and thereby enable a glycolytic role for PFP during germination. However, the fructose 6-P content appears to be well below the Km of PFP for this compound and would therefore preferentially bind to the catalytic site of PFK, which has a lower Km for fructose 6-P. The ATP content appears to be at saturating levels for PFK.  相似文献   

16.
Kinetic properties of phosphofructokinase 2 (PFK2) and regulation of glycolysis by phorbol 12-myristate 13-acetate (PMA) and insulin were investigated in highly glycolytic HT29 colon cancer cells. PFK2 was found to be inhibited by citrate and, to a lesser extent, by phosphoenolpyruvate and ADP, but to be insensitive to inhibition by sn-glycerol phosphate. From these kinetic data, PFK2 from HT29 cells appears different from the liver form, but resembles somewhat the heart isoenzyme. Fructose 2,6-bisphosphate (Fru-2,6-P2) levels, glucose consumption and lactate production are increased in a dose-dependent manner in HT29 cells treated with PMA or insulin. The increase in Fru-2,6-P2 can be related to an increase in the Vmax. of PFK2, persisting after the enzyme has been precipitated with poly(ethylene glycol), without change in the Km for fructose 6-phosphate. The most striking effects of PMA and insulin on Fru-2,6-P2 production are observed after long-term treatment (24 h) and are abolished by actinomycin, cycloheximide and puromycin, suggesting that protein synthesis is involved. Furthermore, the effects of insulin and PMA on glucose consumption, lactate production, Fru-2,6-P2 levels and PFK2 activity are additive, and the effect of insulin on Fru-2,6-P2 production is not altered by pre-treatment of the cells with the phorbol ester. This suggests that these effects are exerted by separate mechanisms.  相似文献   

17.
Kemp RG  Gunasekera D 《Biochemistry》2002,41(30):9426-9430
Mammalian phosphofructokinase (PFK) has evolved by a process of tandem gene duplication and fusion to yield a protein that is more than double the size of prokaryotic PFKs. On the basis of complete conservation of active site residues in the N-terminal half of the eukaryotic enzyme with those of the bacterial PFKs, one assumes that the active site of the eukaryotic PFK is located in the N-terminal half. Again using sequence comparisons, the four allosteric ligand sites of mammalian PFK have been thought to arise from the duplicated catalytic and regulatory sites of the ancestral PFK. Previous site-directed mutagenesis studies [Li et al. (1999) Biochemistry 38, 16407-16412; Chang and Kemp (2002) Biochem. Biophys. Res. Commun. 290, 670-675] have identified the origins of the citrate and fructose 2,6-bisphosphate sites. Here, site-directed mutagenesis of two arginine residues (Arg-433 and Arg-429) of mouse phosphofructokinase is used to identify the ATP inhibitory site, and, by inference, the AMP/ADP site. Mutation of the residues to alanine reduced ATP inhibition in the case of Arg-429 and eliminated ATP inhibition in the instance of Arg-433. The Arg-433 mutant could be inhibited by citrate, and that inhibition could be reversed by fructose 2,6-bisphosphate and cyclic AMP, a high-affinity ligand for the AMP/ADP binding site. It is concluded that the two inhibitors, ATP and citrate, of mammalian PFK interact with sites that have evolved from the duplicated phosphoenolpyruvate/ADP allosteric site of the ancestral PFK. The two sites for activators, fructose 2,6-bisphosphate and AMP or ADP, have evolved from the catalytic site of the ancestral precursor.  相似文献   

18.
Pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase waspurified over 700-fold from germinating cucumber (Cucumis sativuscv. Fletcher) seeds. The purified enzyme has a specific activityof 5.2 µmol.min–1.mg protein–1 in the presenceof 1 µM fru-2,6-P2. The pH optima is similar for boththe forward and reverse reactions (pH 7.5–7.8). Magnesium,manganese and cobalt activate the enzyme, with the highest affinitybeing for magnesium. The enzyme exhibits normal Michaelis-Mentenkinetics in both the presence and absence of fru-2,6-P2. Half-maximumactivation of the enzyme was obtained with 35 nM fru-2,6-P2.Fru-2,6-P2 stimulates activity by increasing Vmax and increasingthe affinity for fru-6-P, fru-1,6-P2 and PPi. Phosphate causesnoncompetitive inhibition with respect to both fru-6-P and PPi.On the basis of the steadystate substrate interaction and Piinhibition data a sequential ternary complex mechanism is proposed. (Received April 28, 1986; Accepted July 9, 1986)  相似文献   

19.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase appears to be the only enzyme catalyzing the formation and hydrolysis of Fru-2,6-P2. The enzyme as we isolate it, contains a trace of tightly bound Fru-6-P. In this condition, it exhibited an ATPase activity comparable to its kinase activity. Inorganic phosphate stimulated all of its activities, by increasing the affinity for all substrates and increasing the Vmax of ATP and Fru-2,6-P2 hydrolysis. The enzyme catalyzed ADP/ATP and Fru-6-P/Fru-2,6-P2 exchanges at rates comparable to net reaction rates. It was phosphorylated by both [gamma-32P]ATP and [2-32P] Fru-2,6-P2, and the label from either donor was chased by either unlabeled donor, showing that the bound phosphate is hydrolyzed if not transferred to an acceptor ligand. The rate of labeling of the enzyme by [2-32P]Fru-2,6-P2 was 2 orders of magnitude greater than the maximal velocity of the bisphosphatase and therefore sufficiently fast to be a step in the hydrolysis. Both inorganic phosphate and Fru-6-P increased the rate and steady state of enzyme phosphorylation by ATP. Fru-2,6-P2 inhibited the ATPase and kinase reactions and Fru-6-P inhibited the Fru-2,6 bisphosphatase reaction while ATP and ADP had no effect. Removal of the trace of Fru-6-P by Glu-6-P isomerase and Glu-6-P dehydrogenase reduced enzyme phosphorylation by ATP to very low levels, greatly inhibited the ATPase, and rendered it insensitive to Pi, but did not affect ADP/ATP exchange. (alpha + beta)Methylfructofuranoside-6-P did not increase the rate or steady state labeling by ATP. These results suggest that labeling of the enzyme by ATP involved the production of [2-32P]Fru-2,6-P2 from the trace Fru-6-P. The 6-phosphofructo-2-kinase, fructose 2,6-bisphosphatase, and ATP/ADP exchange were all inhibited by diethylpyrocarbonate, suggesting the involvement of histidine residues in all three reactions. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a Fru-2,6 bisphosphatase site which is readily phosphorylated by Fru-2,6-P2.  相似文献   

20.
Summary The mechanisms of glycolytic rate control during hibernation in the ground squirrel Spermophilus lateralis were investigated in four tissues: heart, liver, kidney, and leg muscle. Overall glycogen phosphorylase activity decreased significantly in liver and kidney to give 50% or 75% of the activity found in the corresponding euthermic organs, respectively. The concentration of fructose-2,6-bisphosphate (F-2,6-P2) decreased significantly in heart and leg muscle during hibernation to 50% and 80% of euthermic tissue concentrations, respectively, but remained constant in liver and kidney. The overall activity of pyruvate dehydrogenase (PDH) in heart and kidney from hibernators was only 4% of the corresponding euthermic values. Measurements of phosphofructokinase (PFK) and pyruvate kinase (PK) kinetic parameters in euthermic and hibernating animals showed that heart and skeletal muscle had typical rabbit skeletal M-type PFK and M1-type PK. Liver and kidney PFK were similar to the L-type enzyme from rabbit liver, whereas liver and kidney PK were similar to the M2 isozyme found primarily in rabbit kidney. The kinetic parameters of PFK and PK from euthermic vs hibernating animals were not statistically different. These data indicate that tissue-specific phosphorylation of glycogen phosphorylase and PDH, as well as changes in the concentration of F-2,6-P2 may be part of a general mechanism to coordinate glycolytic rate reduction in hibernating S. lateralis.Abbreviations ADP adenosine diphosphate - AMP adenosine monophosphate - ATP adenonine triphoshate - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F-6-P fructose 6-phosphate - F-1,6-P2 fructose 1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - K a activation coefficient - I50 concentration of inhibitor which reduces control activity by 50% - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PFK 6-phosphofructo-1-kinase - PK pyruvate kinase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号