首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Eaf1 (for Esa1-associated factor 1) and Eaf2 have been identified as stable subunits of NuA4, a yeast histone H4/H2A acetyltransferase complex implicated in gene regulation and DNA repair. While both SWI3-ADA2-N-CoR-TF IIIB domain-containing proteins are required for normal cell cycle progression, their depletion does not affect the global Esa1-dependent acetylation of histones. In contrast to all other subunits, Eaf1 is found exclusively associated with the NuA4 complex in vivo. It serves as a platform that coordinates the assembly of functional groups of subunits into the native NuA4 complex. Eaf1 shows structural similarities with human p400/Domino, a subunit of the NuA4-related TIP60 complex. On the other hand, p400 also possesses an SWI2/SNF2 family ATPase domain that is absent from the yeast NuA4 complex. This domain is highly related to the yeast Swr1 protein, which is responsible for the incorporation of histone variant H2AZ in chromatin. Since all of the components of the TIP60 complex are homologous to SWR1 or NuA4 subunits, we proposed that the human complex corresponds to a physical merge of two yeast complexes. p400 function in TIP60 then would be accomplished in yeast by cooperation between SWR1 and NuA4. In agreement with such a model, NuA4 and SWR1 mutants show strong genetic interactions, NuA4 affects histone H2AZ incorporation/acetylation in vivo, and both preset the PHO5 promoter for activation. Interestingly, the expression of a chimeric Eaf1-Swr1 protein recreates a single human-like complex in yeast cells. Our results identified the key central subunit for the structure and functions of the NuA4 histone acetyltransferase complex and functionally linked this activity with the histone variant H2AZ from yeast to human cells.  相似文献   

4.
The p53 protein is subject to Mdm2-mediated degradation by the ubiquitin-proteasome pathway. This degradation requires interaction between p53 and Mdm2 and the subsequent ubiquitination and nuclear export of p53. Exposure of cells to DNA damage results in the stabilization of the p53 protein in the nucleus. However, the underlying mechanism of this effect is poorly defined. Here we demonstrate a key role for c-Abl in the nuclear accumulation of endogenous p53 in cells exposed to DNA damage. This effect of c-Abl is achieved by preventing the ubiquitination and nuclear export of p53 by Mdm2, or by human papillomavirus E6. c-Abl null cells fail to accumulate p53 efficiently following DNA damage. Reconstitution of these cells with physiological levels of c-Abl is sufficient to promote the normal response of p53 to DNA damage via nuclear retention. Our results help to explain how p53 is accumulated in the nucleus in response to DNA damage.  相似文献   

5.
The p53 cofactor Strap (stress responsive activator of p300) is directly targeted by the DNA damage signalling pathway where phosphorylation by ATM (ataxia telangiectasia mutated) kinase facilitates nuclear accumulation. Here, we show that Strap regulation reflects the coordinated interplay between different DNA damage-activated protein kinases, ATM and Chk2 (Checkpoint kinase 2), where phosphorylation by each kinase provides a distinct functional consequence on the activity of Strap. ATM phosphorylation prompts nuclear accumulation, which we show occurs by impeding nuclear export, whereas Chk2 phosphorylation augments protein stability once Strap has attained a nuclear location. These results highlight the various functional roles undertaken by the DNA damage signalling kinases in Strap control and, more generally, shed light on the pathways that contribute to the regulation of the p53 response.  相似文献   

6.
7.
Methylation of MRE11 Regulates its Nuclear Compartmentalization   总被引:1,自引:0,他引:1  
The cellular response to DNA damage includes the orderly recruitment of many proteincomplexes to DNA lesions. The MRE11-RAD50-NBS1 (MRN) complex is well knownto localize early to sites of DNA damage, but the post-translational modificationsrequired to mobilize it to DNA damage sites are poorly understood. Recently, we haveshown that MRE11 is arginine methylated in a C-terminal glycine-arginine rich (GAR)domain by protein arginine methyltransferase 1 (PRMT1). Arginine methylation isrequired for the exonuclease activity of MRE11 and the intra-S phase DNA damageresponse. Herein, we report that cells treated with methylase inhibitors failed to relocalizeMRE11 from PML nuclear bodies to sites of DNA damage and formed few ?-H2AX foci. We also demonstrate that PRMT1 is a component of PML nuclear bodieswhere it co-localizes with MRE11. Using cellular fractionation, we demonstrate thatmethylated MRE11 is predominantly associated with nuclear structures and that MRE11methylated arginines were required for this association. These results suggest thatMRE11 methylation regulates its association with nuclear structures such as PML nuclearbodies and sites of DNA damage.  相似文献   

8.
9.
De Souza CP  Hashmi SB  Horn KP  Osmani SA 《Genetics》2006,174(4):1881-1893
The nuclear pore complex (NPC) is embedded in the nuclear envelope where it mediates transport between the cytoplasm and nucleus and helps to organize nuclear architecture. We previously isolated sonB1, a mutation encoding a single amino acid substitution within the Aspergillus nidulans SONBnNup98 NPC protein (nucleoporin). Here we demonstrate that this mutation causes marked DNA damage sensitivity at 42 degrees . Although SONBnNup98 has roles in the G2 transition, we demonstrate that the G2 DNA damage checkpoint is functional in the sonB1 mutant at 42 degrees . The MRN complex is composed of MRE11, RAD50, and NBS1 and functions in checkpoint signaling, DNA repair, and telomere maintenance. At 42 degrees we find that the DNA damage response defect of sonB1 mutants causes synthetic lethality when combined with mutations in scaANBS1, the A. nidulans homolog of NBS1. We provide evidence that this synthetic lethality is independent of MRN cell cycle checkpoint functions or MREAMRE11-mediated DNA repair functions. We also demonstrate that the single A. nidulans histone H2A gene contains the C-terminal SQE motif of histone H2AX isoforms and that this motif is required for the DNA damage response. We propose that the sonB1 nucleoporin mutation causes a defect in a novel part of the DNA damage response.  相似文献   

10.
Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response.  相似文献   

11.
12.
Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Delta2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Delta2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Delta2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.  相似文献   

13.
G2E3 was originally described as a G2/M-specific gene with DNA damage responsive expression. The presence of a conserved HECT domain within the carboxy-terminus of the protein indicated that it likely functions as a ubiquitin ligase or E3. Although HECT domains are known to function in this capacity for many proteins, we demonstrate that a portion of the HECT domain from G2E3 plays an important role in the dynamic subcellular localization of the protein. We have shown that G2E3 is a nucleo-cytoplasmic shuttling protein with nuclear export mediated by a novel nuclear export domain that functions independently of CRM1. In full-length G2E3, a separate region of the HECT domain suppresses the function of the NES. Additionally, G2E3 contains a nucleolar localization signal (NoLS) in its amino terminus. Localization of G2E3 to the nucleolus is a dynamic process, and the protein delocalizes from the nucleolus rapidly after DNA damage. Cell cycle phase-specific expression and highly regulated subcellular localization of G2E3 suggest a possible role in cell cycle regulation and the cellular response to DNA damage.  相似文献   

14.
53BP1 is a conserved nuclear protein that is implicated in the DNA damage response. After irradiation, 53BP1 localizes rapidly to nuclear foci, which represent sites of DNA double strand breaks, but its precise function is unclear. Using small interference RNA (siRNA), we demonstrate that 53BP1 functions as a DNA damage checkpoint protein. 53BP1 is required for at least a subset of ataxia telangiectasia-mutated (ATM)-dependent phosphorylation events at sites of DNA breaks and for cell cycle arrest at the G2-M interphase after exposure to irradiation. Interestingly, in cancer cell lines expressing mutant p53, 53BP1 was localized to distinct nuclear foci and ATM-dependent phosphorylation of Chk2 at Thr 68 was detected, even in the absence of irradiation. In addition, Chk2 was phosphorylated at Thr 68 in more than 50% of surgically resected lung and breast tumour specimens from otherwise untreated patients [corrected]. We conclude that the constitutive activation of the DNA damage checkpoint pathway may be linked to the high frequency of p53 mutations in human cancer, as p53 is a downstream target of Chk2 and ATM.  相似文献   

15.
Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein, TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells.  相似文献   

16.
Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2′-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.  相似文献   

17.
Acylpeptide hydrolase (APEH) deacetylates N-alpha-acetylated peptides and selectively degrades oxidised proteins, but the biochemical pathways that are regulated by this protease are unknown. Here, we identify APEH as a component of the cellular response to DNA damage. Although APEH is primarily localised in the cytoplasm, we show that a sub-fraction of this enzyme is sequestered at sites of nuclear damage following UVA irradiation or following oxidative stress. We show that localization of APEH at sites of nuclear damage is mediated by direct interaction with XRCC1, a scaffold protein that accelerates the repair of DNA single-strand breaks. We show that APEH interacts with the amino-terminal domain of XRCC1, and that APEH facilitates both single-strand break repair and cell survival following exposure to H2O2 in human cells. These data identify APEH as a novel proteolytic component of the DNA damage response.  相似文献   

18.
Functional analysis of Drosophila melanogaster BRCA2 in DNA repair   总被引:1,自引:0,他引:1  
The human BRCA2 cancer susceptibility protein functions in double-strand DNA break repair by homologous recombination and this pathway is conserved in the fly Drosophila melanogaster. Although a potential Drosophila melanogaster BRCA2 orthologue (dmbrca2; CG30169) has been identified by sequence similarity, no functional data addressing the role of this protein in DNA repair is available. Here, we demonstrate that depletion of dmbrca2 from Drosophila cells induces sensitivity to DNA damage induced by irradiation or treatment with hydroxyurea. Dmbrca2 physically interacts with dmrad51 (spnA) and the two proteins become recruited to nuclear foci after DNA damage. A functional assay for DNA repair demonstrated that in flies dmbrca2 plays a role in double-strand break repair by gene conversion. Finally, we show that depletion of dmbrca2 in cells is synthetically lethal with deficiency in other DNA repair proteins including dmparp. The conservation of the function of BRCA2 in Drosophila will allow the analysis of this key DNA repair protein in a genetically tractable organism potentially illuminating mechanisms of carcinogenesis and aiding the development of therapeutic agents.  相似文献   

19.
20.
The Nijmegen breakage syndrome gene and its role in genome stability   总被引:3,自引:0,他引:3  
NBS1 is the key regulator of the RAD50/MRE11/NBS1 (R/M/N) protein complex, a sensor and mediator for cellular DNA damage response. NBS1 potentiates the enzymatic activity of MRE11 and directs the R/M/N complex to sites of DNA damage, where it forms nuclear foci by interacting with phosphorylated H2AX. The R/M/N complex also activates the ATM kinase, which is a major kinase involved in the activation of DNA damage signal pathways. The ATM requires the R/M/N complex for its own activation following DNA damage, and for conformational change to develop a high affinity for target proteins. In addition, association of NBS1 with PML, the promyelocytic leukemia protein, is required to form nuclear bodies, which have various functions depending on their location and composition. These nuclear bodies function not only in response to DNA damage, but are also involved in telomere maintenance when they are located on telomeres. In this review, we describe the role of NBS1 in the maintenance of genetic stability through the activation of cell-cycle checkpoints, DNA repair, and protein relocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号