首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thanks to its polyphenols and phytochemicals, green tea is believed to have a number of health benefits, including protecting from heart disease, but its mechanism of action at the molecular level is still not understood. Here we explore, by means of atomistic simulations, how the most abundant of the green tea polyphenols, (–)-Epigallocatechin 3-Gallate (EGCg), interacts with the structural C terminal domain of cardiac muscle troponin C (cCTnC), a calcium binding protein that plays an important role in heart contractions. We find that EGCg favourably binds to the hydrophobic cleft of cCTnC consistently with solution NMR experiments. It also binds to cCTnC in the presence of the anchoring region of troponin I (cTnI(34–71)) at the interface between the E and H helices. This appears to affect the strength of the interaction between cCTnC and cTnI(34–71) and also counter-acts the effects of the Gly159Asp mutation, related to dilated cardiomyopathy. Our simulations support the picture that EGCg interacting with the C terminal domain of troponin C may help in regulating the calcium signalling either through competitive binding with the anchoring domain of cTnI or by affecting the interaction between cCTnC and cTnI(34–71).  相似文献   

2.
Ca2+ and human cardiac troponin I (cTnI) peptide binding to human cardiac troponin C (cTnC) have been investigated with the use of 2D [1H,15N] HSQC NMR spectroscopy. The spectral intensity, chemical shift, and line-shape changes were analyzed to obtain the dissociation ( K(D)) and off-rate ( k(off)) constants at 30 degrees C. The results show that sites III and IV exhibit 100-fold higher Ca2+ affinity than site II ( K(D(III,IV)) approximately 0.2 microM, K(D(II)) approximately 20 microM), but site II is partially occupied before sites III and IV are saturated. The addition of the first two equivalents of Ca2+ saturates 90% of sites III and IV and 20% of site II. This suggests that the Ca2+ occupancy of all three sites may contribute to the Ca2+-dependent regulation in muscle contraction. We have determined a k(off) of 5000 s(-1) for site II Ca2+ dissociation at 30 degrees C. Such a rapid off-rate had not been previously measured. Three cTnI peptides, cTnI(34-71), cTnI(128-147), and cTnI(147-163), were titrated to Ca2+-saturated cTnC. In each case, the binding occurs with a 1:1 stoichiometry. The determined K(D) and k(off) values are 1 microM and 5 s(-1) for cTnI(34-71), 78+/-10 microM and 5000 s(-1) for cTnI(128-147), and 150+/-10 microM and 5000 s(-1) for cTnI(147-163), respectively. Thus, the dissociation of Ca2+ from site II and cTnI(128-147) and cTnI(147-163) from cTnC are rapid enough to be involved in the contraction/relaxation cycle of cardiac muscle, while that of cTnI(34-71) from cTnC may be too slow for this process.  相似文献   

3.
Ca(2+) binding to cardiac troponin C (cTnC) triggers contraction in heart muscle. In heart failure, myofilaments response to Ca(2+) are often altered and compounds that sensitize the myofilaments to Ca(2+) possess therapeutic value in this syndrome. One of the most potent and selective Ca(2+) sensitizers is the thiadiazinone derivative EMD 57033, which increases myocardial contractile function both in vivo and in vitro and interacts with cTnC in vitro. We have determined the NMR structure of the 1:1 complex between Ca(2+)-saturated C-domain of human cTnC (cCTnC) and EMD 57033. Favorable hydrophobic interactions between the drug and the protein position EMD 57033 in the hydrophobic cleft of the protein. The drug molecule is orientated such that the chiral group of EMD 57033 fits deep in the hydrophobic pocket and makes several key contacts with the protein. This stereospecific interaction explains why the (-)-enantiomer of EMD 57033 is inactive. Titrations of the cCTnC.EMD 57033 complex with two regions of cardiac troponin I (cTnI(34-71) and cTnI(128-147)) reveal that the drug does not share a common binding epitope with cTnI(128-147) but is completely displaced by cTnI(34-71). These results have important implications for elucidating the mechanism of the Ca(2+) sensitizing effect of EMD 57033 in cardiac muscle contraction.  相似文献   

4.
Li MX  Wang X  Lindhout DA  Buscemi N  Van Eyk JE  Sykes BD 《Biochemistry》2003,42(49):14460-14468
We have utilized 2D [(1)H,(15)N]HSQC NMR spectroscopy to elucidate the binding of three segments of cTnI in native, phosphorylated, and mutated states to cTnC. The near N-terminal region (cRp; residues 34-71) contains the protein kinase C (PKC) phosphorylation sites S41 and S43, the inhibitory region (cIp; residues 128-147) contains another PKC site T142 and a familial hypertrophic cardiomyopathy (FHC) mutation R144G, and the switch region (cSp; residues 147-163) contains the novel p21-activated kinase (PAK) site S149 and another FHC mutation R161W. While S41/S43 phosphorylation of cRp had minimal disruption in the interaction of cRp and cTnC.3Ca(2+), T142 phosphorylation reduced the affinity of cIp for cCTnC.2Ca(2+) by approximately 14-fold and S149 phosphorylation reduced the affinity of cSp for cNTnC.Ca(2+) by approximately 10-fold. The mutation R144G caused an approximately 6-fold affinity decrease of cIp for cCTnC.2Ca(2+) and mutation R161W destabilized the interaction of cSp and cNTnC.Ca(2+) by approximately 1.4-fold. When cIp was both T142 phosphorylated and R144G mutated, its affinity for cCTnC.2Ca(2+) was reduced approximately 19-fold, and when cSp was both S149 phosphorylated and R161W mutated, its affinity for cNTnC.Ca(2+) was reduced approximately 4-fold. Thus, while the FHC mutation R144G enhances the effect of T142 phosphorylation on the interaction of cIp and cCTnC.2Ca(2+), the FHC mutation R161W suppresses the effect of S149 phosphorylation on the interaction of cSp and cNTnC.Ca(2+), demonstrating linkages between the FHC mutation and phosphorylation of cTnI. The observed alterations corroborate well with structural data. These results suggest that while the modifications in the cRp region have minimal influence, those in the key functional cIp-cSp region have a pronounced effect on the interaction of cTnI and cTnC, which may correlate with the altered myofilament function and cardiac muscle contraction under pathophysiological conditions.  相似文献   

5.
Lindhout DA  Li MX  Schieve D  Sykes BD 《Biochemistry》2002,41(23):7267-7274
Cardiac troponin I (cTnI) is the inhibitory component of the troponin complex, and its interaction with cardiac troponin C (cTnC) plays a critical role in transmitting the Ca(2+) signal to the other myofilament proteins in heart muscle contraction. The switch between contraction and relaxation involves a movement of the inhibitory region of cTnI (cIp) from cTnC to actin-tropomyosin. This region of cTnI is prone to missense mutations in heart disease, and a specific mutation, R145G, has been associated with familial hypertrophic cardiomyopathy. It also contains the unique cardiac PKC phosphorylation site at residue T142. To determine the structural consequences of the mutation R145G and the T142 phosphorylation on the interaction of cIp with cTnC, we have utilized 2D [(1)H, (15)N]-HSQC NMR spectroscopy to monitor the binding of native cIp, cIp-R (R145G), and cIp-P (phosphorylated T142), respectively, to the Ca(2+)-saturated C-domain of cTnC (cCTnC.2Ca(2+)). We also report a strategy for cloning, expression, and purification of cTnI peptide, and both synthetic and recombinant peptides are used in this study. NMR chemical shift mapping indicates that the binding epitope of cIp on cCTnC.2Ca(2+) is not greatly affected, but the affinity is reduced by approximately 14-fold by the T142 phosphorylation and approximately 4-fold by the mutation R145G, respectively. This suggests that these modifications of cIp have an adverse effect on the binding of cIp to cCTnC.2Ca(2+). These perturbations may correlate with the impairment or loss of cTnI function in heart muscle contraction.  相似文献   

6.
Li MX  Hoffman RM  Sykes BD 《Biochemistry》2006,45(32):9833-9840
W7 is a well-known calmodulin (CaM) antagonist and has been implicated as an inhibitor of the troponin C-mediated Ca(2+) activation of cardiac muscle contraction. In this study, we use NMR spectroscopy to study binding of W7 to cardiac troponin C (cTnC) free or in complex with cardiac troponin I (cTnI) peptides. Titration of cTnC.3Ca(2+) with W7 shows that residues throughout the sequence, including the N- and C-domains of cTnC and the central linker, are affected. Analysis of the binding stoichiometry and the trajectories of chemical shift changes indicate that W7 binding occurs at multiple sites. To address the issue of whether multiple-site binding is relevant within the troponin complex, W7 is titrated to a cTnC-cTnI complex (cTnC.3Ca(2+).cTnI(34)(-)(71).cTnI(128)(-)(163)). In the presence of the N-terminal (residues approximately 34-71), inhibitory (residues approximately 128-147), and switch (residues approximately 147-163) regions of cTnI, W7 induces chemical shift changes only in the N-domain and not in the C-domain or the central linker of cTnC. The results indicate that in the presence of cTnI, W7 no longer binds to multiple sites of cTnC but instead binds specifically to the N-domain, and the binding (K(D) = 0.5 +/- 0.1 mM) can occur together with the switch region of cTnI. Hence, W7 may play a role in directly modulating the Ca(2+) sensitivity of the regulatory domain of cTnC and the interaction of the switch region of cTnI and cTnC.  相似文献   

7.
The compound MCI-154 was previously shown to increase the calcium sensitivity of cardiac muscle contraction. Using solution NMR spectroscopy, we demonstrate that MCI-154 interacts with the calcium-sensing subunit of the cardiac troponin complex, cardiac troponin C (cTnC). Surprisingly, however, it binds only to the structural C-terminal domain of cTnC (cCTnC), and not to the regulatory N-terminal domain (cNTnC) that determines the calcium sensitivity of cardiac muscle.Physiologically, cTnC is always bound to cardiac troponin I (cTnI), so we examined its interaction with MCI-154 in the presence of two soluble constructs, cTnI1–77 and cTnI135–209, which contain all of the segments of cTnI known to interact with cTnC. Neither the cTnC-cTnI1–77 complex nor the cTnC-cTnI135–209 complex binds to MCI-154. Since residues 39–60 of cTnI are known to bind tightly to the cCTnC domain to form a structured core that is invariant throughout the cardiac cycle, we conclude that MCI-154 does not bind to cTnC when it is part of the intact cardiac troponin complex. Thus, MCI-154 likely exerts its calcium sensitizing effect by interacting with a target other than cardiac troponin.  相似文献   

8.
Lindhout DA  Boyko RF  Corson DC  Li MX  Sykes BD 《Biochemistry》2005,44(45):14750-14759
We have addressed the electrostatic interactions occurring between the inhibitory region of cardiac troponin I with the C-lobe of troponin C using scanning glycine mutagenesis of the inhibitory region. We report variations in the electric potentials due to mutation of charged residues within this complex based upon the solved NMR structure (1OZS). These results demonstrate the importance of electrostatics within this complex, and it is proposed that electrostatic interactions are integral to the formation and function of larger ternary troponin complexes. To address this hypothesis, we report (15)N NMR relaxation measurements, which suggest that, within a ternary complex involving the C-lobe and the N-terminal region of troponin I (residues 34-71), the inhibitory region maintains the electrostatic interactions with the E-helix of the C-lobe as observed within the binary complex. These results imply that, in solution, the cardiac troponin complex behaves in a manner consistent with that of the crystal structure of the skeletal isoform (1YTZ). A cardiac troponin complex possessing domain orientations similar to that of the skeletal isoform provides structural insights into altered troponin I activities as observed for the familial hypertrophic cardiomyopathy mutation R144G and phosphorylation of Thr142.  相似文献   

9.
The cardiac-specific N-terminus of cardiac troponin I (cTnI) is known to modulate the activity of troponin upon phosphorylation with protein kinase A (PKA) by decreasing its Ca2+ affinity and increasing the relaxation rate of the thin filament. The molecular details of this modulation have not been elaborated to date. We have established that the N-terminus and the switch region of cTnI bind to cNTnC [the N-domain of cardiac troponin C (cTnC)] simultaneously and that the PKA signal is transferred via the cTnI N-terminus modulating the cNTnC affinity toward cTnI147-163 but not toward Ca2+. The Kd of cNTnC for cTnI147-163 was found to be 600 μM in the presence of cTnI1-29 and 370 μM in the presence of cTn11-29PP, which can explain the difference in muscle relaxation rates upon the phosphorylation with PKA in experiments with cardiac fibers. In the light of newly found mutations in cNTnC that are associated with cardiomyopathies, the important role played by the cTnI N-terminus in the development of heart disorders emerges. The mutants studied, L29Q (the N-domain of cTnC containing mutation L29Q) and E59D/D75Y (the N-domain of cTnC containing mutation E59D/D75Y), demonstrated unchanged Ca2+ affinity per se and in complex with the cTnI N-terminus (cTnI1-29 and cTnI1-29PP). The affinity of L29Q and E59D/D75Y toward cTnI147-163 was significantly perturbed, both alone and in complex with cTnI1-29 and cTnI1-29PP, which is likely to be responsible for the development of malfunctions.  相似文献   

10.
The key events in regulating cardiac muscle contraction involve Ca(2+) binding to and release from cTnC (troponin C) and structural changes in cTnC and other thin filament proteins triggered by Ca(2+) movement. Single mutations L29Q and G159D in human cTnC have been reported to associate with familial hypertrophic and dilated cardiomyopathy, respectively. We have examined the effects of these individual mutations on structural transitions in the regulatory N-domain of cTnC triggered by Ca(2+) binding and dissociation. This study was carried out with a double mutant or triple mutants of cTnC, reconstituted into troponin with tryptophanless cTnI and cTnT. The double mutant, cTnC(L12W/N51C) labeled with 1,5-IAEDANS at Cys-51, served as a control to monitor Ca(2+)-induced opening and closing of the N-domain by F?rster resonance energy transfer (FRET). The triple mutants contained both L12W and N51C labeled with 1,5-IAEDANS, and either L29Q or G159D. Both mutations had minimal effects on the equilibrium distance between Trp-12 and Cys-51-AEDANS in the absence or presence of bound Ca(2+). L29Q had no effect on the closing rate of the N-domain triggered by release of Ca(2+), but reduced the Ca(2+)-induced opening rate. G159D reduced both the closing and opening rates. Previous results showed that the closing rate of cTnC N-domain triggered by Ca(2+) dissociation was substantially enhanced by PKA phosphorylation of cTnI. This rate enhancement was abolished by L29Q or G159D. These mutations alter the kinetics of structural transitions in the regulatory N-domain of cTnC that are involved in either activation (L29Q) or deactivation (G159D). Both mutations appear to be antagonistic toward phosphorylation signaling between cTnI and cTnC.  相似文献   

11.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation.  相似文献   

12.
The N-terminal domain of cardiac troponin I (cTnI) comprising residues 33-80 and lacking the cardiac-specific amino terminus forms a stable binary complex with the C-terminal domain of cardiac troponin C (cTnC) comprising residues 81-161. We have utilized heteronuclear multidimensional NMR to assign the backbone and side-chain resonances of Ca2+-saturated cTnC(81-161) both free and bound to cTnI(33-80). No significant differences were observed between secondary structural elements determined for free and cTnI(33-80)-bound cTnC(81-161). We have determined solution structures of Ca2+-saturated cTnC(81-161) free and bound to cTnI(33-80). While the tertiary structure of cTnC(81-161) is qualitatively similar to that observed free in solution, the binding of cTnI(33-80) results mainly in an opening of the structure and movement of the loop region between helices F and G. Together, these movements provide the binding site for the N-terminal domain of cTnI. The putative binding site for cTnI(33-80) was determined by mapping amide proton and nitrogen chemical shift changes, induced by the binding of cTnI(33-80), onto the C-terminal cTnC structure. The binding interface for cTnI(33-80), as suggested from chemical shift changes, involves predominantly hydrophobic interactions located in the expanded hydrophobic pocket. The largest chemical shift changes were observed in the loop region connecting helices F and G. Inspection of available TnC sequences reveals that these residues are highly conserved, suggesting a common binding motif for the Ca2+/Mg2+-dependent interaction site in the TnC/TnI complex.  相似文献   

13.
Cardiac troponin C (cTnC) is the Ca(2+)-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of heart failure. Ca(2+) binding to the regulatory domain of cTnC (cNTnC) induces little structural change but sets the stage for cTnI binding. A large "closed" to "open" conformational transition occurs in the regulatory domain upon binding cTnI(147-163) or bepridil. This raises the question of whether cTnI(147-163) and bepridil compete for cNTnC.Ca(2+). In this work, we used two-dimensional (1)H,(15)N-heteronuclear single quantum coherence (HSQC) NMR spectroscopy to examine the binding of bepridil to cNTnC.Ca(2+) in the absence and presence of cTnI(147-163) and of cTnI(147-163) to cNTnC.Ca(2+) in the absence and presence of bepridil. The results show that bepridil and cTnI(147-163) bind cNTnC.Ca(2+) simultaneously but with negative cooperativity. The affinity of cTnI(147-163) for cNTnC.Ca(2+) is reduced approximately 3.5-fold by bepridil and vice versa. Using multinuclear and multidimensional NMR spectroscopy, we have determined the structure of the cNTnC.Ca(2+).cTnI(147-163).bepridil ternary complex. The structure reveals a binding site for cTnI(147-163) primarily located on the A/B interhelical interface and a binding site for bepridil in the hydrophobic pocket of cNTnC.Ca(2+). In the structure, the N terminus of the peptide clashes with part of the bepridil molecule, which explains the negative cooperativity between cTnI(147-163) and bepridil for cNTnC.Ca(2+). This structure provides insights into the features that are important for the design of cTnC-specific cardiotonic drugs, which may be used to modulate the Ca(2+) sensitivity of the myofilaments in heart muscle contraction.  相似文献   

14.
The interaction of Cardiac Troponin C (cTnC) and Cardiac Troponin I (cTnI) plays a critical role in transmitting the Ca (2+) signal to the other myofilament proteins in the activation of cardiac muscle contraction. As such, the cTnC-cTnI interface is a logical target for cardiotonic agents such as levosimendan that can modulate the Ca (2+) sensitivity of the myofilaments. Evidence indicates that drug candidates may exert their effects by targeting a site formed by binding of the switch region of cTnI to the regulatory N domain of cTnC (cNTnC). In this study, we utilized two-dimensional (1)H- (15)N HSQC NMR spectroscopy to monitor the binding of levosimendan and its analogues, CMDP, AMDP, CI-930, imazodan, and MPDP, to cNTnC.Ca (2+) in complex with two versions of the switch region of cTnI (cTnI 147-163 and cTnI 144-163). Levosimendan, CMDP, AMDP, and CI-930 were found to bind to both cNTnC.Ca (2+).cTnI 147-163 and cNTnC.Ca (2+).cTnI 144-163 complexes. These compounds contain a methyl group that is absent in MPDP or imazodan. Thus, the methyl group is one of the pharmacophores responsible for the action of these pyridazinone drugs on cTnC. Furthermore, the results showed that the cNTnC.Ca (2+).cTnI 144-163 complex presents a higher-affinity binding site for these compounds than the cNTnC.Ca (2+).cTnI 147-163 complex. This is consistent with our observation that the affinity of cTnI 144-163 for cNTnC.Ca (2+) is approximately 10-fold stronger than that of cTnI 147-163, likely a result of electrostatic forces between the N-terminal RRV extension in cTnI 144-163 and the acidic residues in the C and D helices of cNTnC. These results will help in the delineation of the mode of action of levosimendan on the important functional unit of cardiac troponin that constitutes the regulatory domain of cTnC and the switch region of cTnI.  相似文献   

15.
The objective of this work was to investigate the effect of hypertrophic cardiomyopathy-linked A8V and E134D mutations in cardiac troponin C (cTnC) on the response of reconstituted thin filaments to calcium upon phosphorylation of cardiac troponin I (cTnI) by protein kinase A. The phosphorylation of cTnI at protein kinase A sites was mimicked by the S22D/S23D double mutation in cTnI. Our results demonstrate that the A8V and E134D mutations had no effect on the extent of calcium desensitization of reconstituted thin filaments induced by cTnI pseudophosphorylation. However, the A8V mutation enhanced the effect of cTnI pseudophosphorylation on the rate of dissociation of calcium from reconstituted thin filaments and on the calcium dependence of actomyosin ATPase. Consequently, while the A8V mutation still led to a slower rate of dissociation of calcium from reconstituted thin filaments upon pseudophosphorylation of cTnI, the ability of the A8V mutation to decrease the rate of calcium dissociation was weakened. In addition, the ability of the A8V mutation to sensitize actomyosin ATPase to calcium was weakened after cTnI was replaced by the phosphorylation mimetic of cTnI. Consistent with the hypothesis that the E134D mutation is benign, it exerted a minor to no effect on the rate of dissociation of calcium from reconstituted thin filaments or on the calcium sensitivity of actomyosin ATPase, regardless of the cTnI phosphorylation status. In conclusion, our study enhances our understanding of how cardiomyopathy-linked cTnC mutations affect the response of reconstituted thin filaments to calcium upon cTnI phosphorylation.  相似文献   

16.
Hoffman RM  Li MX  Sykes BD 《Biochemistry》2005,44(48):15750-15759
W7 is a well-characterized calmodulin antagonist. It decreases the maximal tension and rate of ATP hydrolysis in cardiac muscle fibers. Cardiac troponin C (cTnC) has been previously implicated as the mechanistically significant target for W7 in the myofilament. Two-dimensional NMR spectra ({1H,15N}- and {1H,13C}-HSQCs) were used to monitor the Ca2+-dependent binding of W7 to cTnC. Titration of cTnC x 3Ca2+ with W7 indicated binding to both domains of the protein. We examined the binding of W7 to the separated domains of cTnC to simplify the spectral analysis. In the titration of the C-terminal domain (cCTnC x 2Ca2+), the spectral peaks originating from a subset of residues changed nonuniformly, and could not be well-described as single-site binding. A global fit of the cCTnC x 2Ca2+ titration data to a two-site, sequential binding model (47 residues simultaneously fit) yielded a dissociation constant (Kd1) of 0.85-0.91 mM for the singly bound state, with the second dissociation constant fit to 3.40-3.65 mM (> or = 4 x Kd1). The titration data for the N-terminal domain (cNTnC x Ca2+) was globally fit to single-site binding model with a Kd of 0.15-0.30 mM (41 residues fit). The data are consistent with W7 binding to each domain's major hydrophobic pocket, coordinating side chains responsible for liganding cTnI. When in muscle fibers, W7 may compete with cTnI for target sites on cTnC.  相似文献   

17.
The binding of Ca(2+) to cardiac troponin C (cTnC) triggers contraction in cardiac muscle. In diseased heart, the myocardium is often desensitized to Ca(2+), leading to weak cardiac contractility. Compounds that can sensitize cardiac muscle to Ca(2+) would have potential therapeutic value in treating heart failure. The thiadiazinone derivative EMD 57033 is an identified 'Ca(2+) sensitizer', and cTnC is a potential target of the drug. In this work, we used 2D ?(1)H, (15)N?-HSQC NMR spectroscopy to monitor the binding of EMD 57033 to cTnC in the Ca(2+)-saturated state. By mapping the chemical shift changes to the structure of cTnC, EMD 57033 is found to bind to the C-domain of cTnC. To test whether EMD 57033 competes with cardiac TnI (cTnI) for cTnC and interferes with the inhibitory function, we examined the interaction of cTnC with an inhibitory cTnI peptide (residues 128-147, cIp) in the absence and presence of EMD 57033, respectively. cTnC was also titrated with EMD 57033 in the presence of cIp. The results show that although both the drug and cIp interact with the C-domain of cTnC, they do not displace each other, suggesting noncompetitive binding sites for the two targets. Detailed chemical shift mapping of the binding sites reveals that the regions encompassing helix G-loop IV-helix H are more affected by EMD 57033, while residues located on helix E-loop III-helix F and the linker between sites III and IV are more affected by cIp. In both cases, the binding stoichiometry is 1:1. The binding affinities for the drug are 8.0 +/- 1.8 and 7.4 +/- 4.8 microM in the absence and presence of cIp, respectively, while those for the peptide are 78.2 +/- 10.3 and 99.2 +/- 30.0 microM in the absence and presence of EMD 57033, respectively. These findings suggest that EMD 57033 may exert its positive inotropic effect by not directly enhancing Ca(2+) binding to the Ca(2+) regulatory site of cTnC, but by binding to the structural domain of cTnC, modulating the interaction between cTnC and other thin filament proteins, and increasing the apparent Ca(2+) sensitivity of the contractile system.  相似文献   

18.
Cardiac troponin I(129-149) binds to the calcium saturated cardiac troponin C/troponin I(1-80) complex at two distinct sites. Binding of the first equivalent of troponin I(129-149) was found to primarily affect amide proton chemical shifts in the regulatory domain, while the second equivalent perturbed amide proton chemical shifts within the D/E linker region. Nitrogen-15 transverse relaxation rates showed that binding the first equivalent of inhibitory peptide to the regulatory domain decreased conformational exchange in defunct calcium binding site I and that addition of the second equivalent of inhibitory peptide decreased flexibility in the D/E linker region. No interactions between the inhibitory peptide and the C-domain of cardiac troponin C were detected by these methods demonstrating that the inhibitory peptide cannot displace cTnI(1-80) from the C-domain.  相似文献   

19.
The potential for using paramagnetic lanthanide ions to partially align troponin C in solution as a tool for the structure determination of bound troponin I peptides has been investigated. A prerequisite for these studies is an understanding of the order of lanthanide ion occupancy in the metal binding sites of the protein. Two-dimensional [(1)H, (15)N] HSQC NMR spectroscopy has been used to examine the binding order of Ce(3+), Tb(3+), and Yb(3+) to both apo- and holo-forms of human cardiac troponin C (cTnC) and of Ce(3+) to holo-chicken skeletal troponin C (sTnC). The disappearance of cross-peak resonances in the HSQC spectrum was used to determine the order of occupation of the binding sites in both cTnC and sTnC by each lanthanide. For the lanthanides tested, the binding order follows that of the net charge of the binding site residues from most to least negative; the N-domain calcium binding sites are the first to be filled followed by the C-domain sites. Given this binding order for lanthanide ions, it was demonstrated that it is possible to create a cTnC species with one lanthanide in the N-domain site and two Ca(2+) ions in the C-domain binding sites. By using the species cTnC.Yb(3+).2 Ca(2+) it was possible to confer partial alignment on a bound human cardiac troponin I (cTnI) peptide. Residual dipolar couplings (RDCs) were measured for the resonances in the bound (15)N-labeled cTnI(129-148) by using two-dimensional [(1)H, (15)N] inphase antiphase (IPAP) NMR spectroscopy.  相似文献   

20.
Multidimensional heteronuclear magnetic resonance studies of the cardiac troponin C/troponin I(1-80)/troponin I(129-166) complex demonstrated that cardiac troponin I(129-166), corresponding to the adjacent inhibitory and regulatory regions, interacts with and induces an opening of the cardiac troponin C regulatory domain. Chemical shift perturbation mapping and (15)N transverse relaxation rates for intact cardiac troponin C bound to either cardiac troponin I(1-80)/troponin I(129-166) or troponin I(1-167) suggested that troponin I residues 81-128 do not interact strongly with troponin C but likely serve to modulate the interaction of troponin I(129-166) with the cardiac troponin C regulatory domain. Chemical shift perturbations due to troponin I(129-166) binding the cardiac troponin C/troponin I(1-80) complex correlate with partial opening of the cardiac troponin C regulatory domain previously demonstrated by distance measurements using fluorescence methodologies. Fluorescence emission from cardiac troponin C(F20W/N51C)(AEDANS) complexed to cardiac troponin I(1-80) was used to monitor binding of cardiac troponin I(129-166) to the regulatory domain of cardiac troponin C. The apparent K(d) for cardiac troponin I(129-166) binding to cardiac troponin C/troponin I(1-80) was 43.3 +/- 3.2 microM. After bisphosphorylation of cardiac troponin I(1-80) the apparent K(d) increased to 59.1 +/- 1.3 microM. Thus, phosphorylation of the cardiac-specific N-terminus of troponin I reduces the apparent binding affinity of the regulatory domain of cardiac troponin C for cardiac troponin I(129-166) and provides further evidence for beta-adrenergic modulation of troponin Ca(2+) sensitivity through a direct interaction between the cardiac-specific amino-terminus of troponin I and the cardiac troponin C regulatory domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号