首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life‐history theory concerns the trade‐offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life‐history trade‐offs, but the details remain obscure. As life‐history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life‐history trade‐offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life‐history information is available, cannot generally be performed without compromising the aims of the studies that generated the life‐history data. There is a need therefore for novel non‐invasive measurements of multi‐tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life‐history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life‐history trade‐offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life‐history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade‐offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other.  相似文献   

2.
The costs of reproduction are an important constraint that shapes the evolution of life histories, yet our understanding of the proximate mechanism(s) leading to such life‐history trade‐offs is not well understood. Oxidative stress is a strong candidate measure thought to mediate the costs of reproduction, yet empirical evidence supporting that increased reproductive investment leads to oxidative stress is equivocal. We investigated whether territory quality and offspring provisioning increase oxidative stress in male snow buntings (Plectrophenax nivalis) using a repeated sampling design. We show that arrival oxidative stress is not a constraint on territory quality or the number of offspring fledged. Nevertheless, owners of higher‐quality territories experienced an oxidative cost, with this cost increasing more rapidly in younger males. Males that provisioned offspring at a high rate also experienced increased oxidative stress. Together, these findings support the potential role of oxidative stress in mediating life‐history trade‐offs. Future work should consider that reproductive workload is not limited to offspring care, and other activities – including territory defence – may contribute significantly to the costs of reproduction.  相似文献   

3.
Large brains (relative to body size) might confer fitness benefits to animals. Although the putative costs of well‐developed brains can constrain the majority of species to modest brain sizes, these costs are still poorly understood. Given that the neural tissue is energetically expensive and demands antioxidants, one potential cost of developing and maintaining large brains is increased oxidative stress (‘oxidation exposure’ hypothesis). Alternatively, because large‐brained species exhibit slow‐paced life histories, they are expected to invest more into self‐maintenance such as an efficacious antioxidative defence machinery (‘oxidation avoidance’ hypothesis). We predict decreased antioxidant levels and/or increased oxidative damage in large‐brained species in case of oxidation exposure, and the contrary in case of oxidation avoidance. We address these contrasting hypotheses for the first time by means of a phylogenetic comparative approach based on an unprecedented data set of four redox state markers from 85 European bird species. Large‐brained birds suffered less oxidative damage to lipids (measured as malondialdehyde levels) and exhibited higher total nonenzymatic antioxidant capacity than small‐brained birds, whereas uric acid and glutathione levels were independent of brain size. These results were not altered by potentially confounding variables and did not depend on how relative brain size was quantified. Our findings partially support the ‘oxidation avoidance’ hypothesis and provide a physiological explanation for the linkage of large brains with slow‐paced life histories: reduced oxidative stress of large‐brained birds can secure brain functionality and healthy life span, which are integral to their lifetime fitness and slow‐paced life history.  相似文献   

4.
Evolutionary theories propose that aging is the result of a trade‐off between self‐maintenance and reproduction, and oxidative stress may play a crucial role in such a trade‐off. Phenotypic manipulations have revealed that a high investment in reproduction leads to a decline in the organism's resistance to oxidative stress, which could in turn accelerate aging. Here, by using quantitative genetic analyses as a tool to disentangle genetic effects from phenotypic variances, the relationship between resistance to oxidative stress at sexual maturity and two key reproductive life‐history traits (i.e., number of breeding events during life and age at last reproduction) was analyzed in cross‐fostered zebra finches. The age of last reproduction had high narrow‐sense heritability, whereas the number of breeding events and oxidative stress resistance showed medium and low heritabilities, respectively. We detected positive genetic correlations between early resistance to oxidative stress and both life‐history traits, suggesting that the efficiency of the antioxidant machinery at maturity may be related to individual reproductive investment throughout lifetime, possibly by influencing the pattern of cellular senescence. Genes encoding for resistance to oxidative stress would have pleiotropic effects on reproductive capacity and aging. Further work is required to confirm this assert.  相似文献   

5.
The Free Radical Theory of Ageing (FRTA) predicts that oxidative stress, induced when levels of reactive oxygen species exceed the capacity of antioxidant defenses, causes ageing. Recently, it has also been argued that oxidative damage may mediate important life‐history trade‐offs. Here, we use inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age‐dependent reproductive effort, life span, ageing, oxidative damage, and total antioxidant capacity within and between the sexes. The FRTA predicts that oxidative damage should accumulate with age and negatively correlate with life span. We find that protein oxidation is greater in the shorter lived sex (females) and negatively genetically correlated with life span in both sexes. However, oxidative damage did not accumulate with age in either sex. Previously we have shown antagonistic pleiotropy between the genes for early‐life reproductive effort and ageing rate in both sexes, although this was stronger in females. In females, we find that elevated fecundity early in life is associated with greater protein oxidation later in life, which is in turn positively correlated with the rate of ageing. Our results provide mixed support for the FRTA but suggest that oxidative stress may mediate sex‐specific life‐history strategies in G. sigillatus.  相似文献   

6.
Oxidative stress has been proposed to mediate one of the most important aspects of life‐history evolution: the trade‐off between reproduction and self‐maintenance. However, empirical studies have cast doubt on the generality of this intriguing notion. Here, we hypothesize that reproduction alters oxidative status only when a trade‐off between reproduction and self‐maintenance occurs. Accordingly, in female Bicyclus anynana butterflies, we found that reproduction affected oxidative markers only under challenging thermal conditions that made the trade‐off between reproduction and longevity emerge. Interestingly, under such conditions, butterflies favored longevity over reproduction, suggesting that self‐maintenance mechanisms were activated. Accordingly, butterflies reproducing under challenging thermal conditions exhibited enhanced antioxidant defenses and stable oxidative damage. Altogether, our results indicate that a trade‐off between reproduction and self‐maintenance is indeed a necessary condition for reproduction to alter oxidative status, and that the effects of such a trade‐off on oxidative status depend on whether priority is given to self‐maintenance or reproduction. Assessing the existence of the trade‐off between self‐maintenance and reproduction, and whether self‐maintenance is prioritized relative to reproduction is therefore crucial for understanding variation in oxidative status in reproducing animals, which may clarify the general implication of oxidative stress in the resolution of life‐history trade‐offs.  相似文献   

7.
Life‐history theory assumes that reproduction and lifespan are constrained by trade‐offs which prevent their simultaneous increase. Recently, there has been considerable interest in the possibility that this cost of reproduction is mediated by oxidative stress. However, empirical tests of this theory have yielded equivocal support. We carried out a meta‐analysis to examine associations between reproduction and oxidative damage across markers and tissues. We show that oxidative damage is positively associated with reproductive effort across females of various species. Yet paradoxically, categorical comparisons of breeders versus non‐breeders reveal that transition to the reproductive state is associated with a step‐change reduction in oxidative damage in certain tissues and markers. Developing offspring may be particularly sensitive to harm caused by oxidative damage in mothers. Therefore, such reductions could potentially function to shield reproducing mothers, gametes and developing offspring from oxidative insults that inevitably increase as a consequence of reproductive effort. According to this perspective, we hypothesise that the cost of reproduction is mediated by dual impacts of maternally‐derived oxidative damage on mothers and offspring, and that mothers may be selected to diminish such damage. Such oxidative shielding may explain why many existing studies have concluded that reproduction has little or no oxidative cost. Future advance in life‐history theory therefore needs to take account of potential transgenerational impacts of the mechanisms underlying life‐history trade‐offs.  相似文献   

8.
Oxidative stress was recently demonstrated to affect several fitness‐related traits and is now well recognized to shape animal life‐history evolution. However, very little is known about how much resistance to oxidative stress is determined by genetic and environmental effects and hence about its potential for evolution, especially in wild populations. In addition, our knowledge of phenotypic sexual dimorphism and cross‐sex genetic correlations in resistance to oxidative stress remains extremely limited despite important evolutionary implications. In free‐living great tits (Parus major), we quantified heritability, common environmental effect, sexual dimorphism and cross‐sex genetic correlation in offspring resistance to oxidative stress by performing a split‐nest cross‐fostering experiment where 155 broods were split, and all siblings (n = 791) translocated and raised in two other nests. Resistance to oxidative stress was measured as both oxidative damage to lipids and erythrocyte resistance to a controlled free‐radical attack. Both measurements of oxidative stress showed low additive genetic variances, high common environmental effects and phenotypic sexual dimorphism with males showing a higher resistance to oxidative stress. Cross‐sex genetic correlations were not different from unity, and we found no substantial heritability in resistance to oxidative stress at adult age measured on 39 individuals that recruited the subsequent year. Our study shows that individual ability to resist to oxidative stress is primarily influenced by the common environment and has a low heritability with a consequent low potential for evolution, at least at an early stage of life.  相似文献   

9.
The interest shown by ecologists in antioxidants and oxidative stress as potential modulators of life‐history trade‐offs has expanded greatly in recent years. However, we still know very little about natural variation in oxidative damage and antioxidant capacity in free‐living animals. In this study, we describe the natural variation in three components of oxidative balance in nestlings and breeding females in free‐living Great Tits Parus major and Common Starlings Sturnus vulgaris in central Italy, and relate these to breeding conditions and life‐history traits. Our results suggest that there are associations among oxidative physiology, reproductive activity, growth pattern and season in wild birds, but that the nature of these associations might be species‐specific rather than general across species.  相似文献   

10.
Many adult traits in Drosophila melanogaster show phenotypic plasticity, and the effects of diet on traits such as lifespan and reproduction are well explored. Although plasticity in response to food is still present in older flies, it is unknown how sustained environmental variation affects life‐history traits. Here, we explore how such life‐long fluctuations of food supply affect weight and survival in groups of flies and affect weight, survival and reproduction in individual flies. In both experiments, we kept adults on constant high or low food and compared these to flies that experienced fluctuations of food either once or twice a week. For these ‘yoyo’ groups, the initial food level and the duration of the dietary variation differed during adulthood, creating four ‘yoyo’ fly groups. In groups of flies, survival and weight were affected by adult food. However, for individuals, survival and reproduction, but not weight, were affected by adult food, indicating that single and group housing of female flies affects life‐history trajectories. Remarkably, both the manner and extent to which life‐history traits varied in relation to food depended on whether flies initially experienced high or low food after eclosion. We therefore conclude that the expression of life‐history traits in adult life is affected not only by adult plasticity, but also by early adult life experiences. This is an important but often overlooked factor in studies of life‐history evolution and may explain variation in life‐history experiments.  相似文献   

11.
Oxidative stress has recently been suggested to play an important role in life‐history evolution, but little is known about natural variation and heritability of this physiological trait. Here, we explore phenotypic variation in resistance to oxidative stress of cross‐fostered yellow‐legged gull (Larus cachinnans) chicks. Resistance to oxidative stress was not related to plasma antioxidants at hatching, which are mostly derived from maternal investment into eggs. Common environmental effects on phenotypic variation in resistance to oxidative stress were not significant. Heritability was relatively low and nonsignificant in hatchlings, but interestingly, the chicks of age 8 days showed high and significant heritability (h2 = 0.59). Our results suggest that resistance to oxidative stress is determined mainly by the genotype as chicks grow. Further work is required to explore the genetic role of oxidative stress in life‐history evolution.  相似文献   

12.
Oxidative stress has been suggested as a mediator in life‐history trade‐off. By spending more resources on for example reproduction an organism might sacrifice its antioxidant defence. So far, most conclusions on trade‐offs between life‐history traits and oxidative stress have been drawn from laboratory studies using a few model species and there is a need for studies conducted in natural settings. We investigated associations between markers for antioxidant status (antioxidant enzyme activities and antioxidant levels), body condition, age and reproduction in three species of wild‐living passerines. The impact from an anthropogenic stressor (metal pollution) was also assessed. The three bird species showed interspecific variation in their SOD and CAT activities, indicating different pathways to eliminate radicals. The age of females affected both antioxidant status and the breeding performance, indicating the importance of age as a factor in life‐history studies. Old birds had lower levels of antioxidants/antioxidant enzyme activities and they produced larger broods/more successful broods, though the latter might be confounded by surviving females having increased fitness. Metal exposure had a negative impact on breeding, and improved breeding outcome was also associated with increased antioxidant defence, but metal exposure was not directly related to the oxidative status of birds, emphasizing that additional stressors might independently affect the same traits. Our results highlight that caution has to be taken when generalizing and extrapolating results to even closely related species. The results support the idea that there is a cost of reproduction, in terms of increased resources spent on antioxidant defence, though this should be confirmed with experimental studies.  相似文献   

13.
Aim To test whether a direct relationship exists between the relative abundance of woody plant genera and precipitation regime along the north–south climate gradient of the western Amazon. Location Lowland rain forests in the western Amazon. Methods Floristic data on 91 woody plant genera, from 39 0.1‐ha plots across the western Amazon, and precipitation data from a 0.5° global data set were used to test for correlations between plant relative abundance (defined as percentage number of stems ≥ 2.5 cm diameter at breast height for each woody plant genus per plot) and derived dry‐season variables. Moisture preference was then assessed in terms of pioneer and shade‐tolerant life‐history strategy. Results There were significant associations between the distribution of plant relative abundances and seasonal precipitation variables in 34% of genera analysed. Significant differences were identified in size‐class distribution between dry affiliates and generalists. Dry affiliates were not dominant in any size class in any plot type, whereas climate generalists dominated most of the size classes in the dry plots and the mid‐range size classes in the wet plots. Dry‐affiliate genera were a minority, even in dry forests. Wet‐affiliate genera were correlated with shade tolerance, whereas genera with no rainfall affiliation were often pioneers. Main conclusions The results suggest that moisture variable seasonality influences community composition in a manner that can be related to the life‐history trade‐off between shade tolerance and pioneer ranking. One possible reason for higher diversity in wetter forests is that high rainfall amplifies the niche space available to shade‐tolerant plants. Determining which plant groups are constrained by which environmental variables can contribute to our understanding of how forest composition may be changing now, and how it may change under future climate: if shade‐tolerant trees are also drought‐intolerant, community structure in wet forests may be more vulnerable to future increases in moisture stress.  相似文献   

14.
Life‐history stages such as reproduction and molt are energetically costly. Reproductive costs include those associated not only with offspring production, but also protecting and provisioning young. Costs typically associated with molting include decreased thermoregulatory and locomotive performance, and increased metabolic and nutritional costs. Energetic demands may disrupt homeostasis, particularly in terms of its maintenance (e.g., oxidative stress and immunity). Few investigators have explored the relationship between effort (increased metabolic rate) and oxidative status and stress by comparing life‐history stages with different energetic demands. However, comparative studies are crucial for understanding the processes of energy allocation and their consequences for different physiological functions. Our objective was to determine how two highly demanding life‐history stages, breeding and molting, affected oxidative balance in Chinstrap Penguins (Pygoscelis antarcticus), a species where these two activities do not overlap. We found that the heterophil/lymphocyte (H/L) ratio was significantly higher during breeding than molting; oxidative damage was also higher during breeding. In contrast, we found no significant differences between these stages in total antioxidant capacity. We also found sex differences, with males having greater oxidative damage than females. Our results suggest that breeding is more stressful and more demanding for Chinstrap Penguins than molting, and provide further support for the relationship between effort, in terms of increased metabolic rate, and oxidative balance.  相似文献   

15.
Early‐life trade‐offs faced by developing offspring can have long‐term consequences for their future fitness. Young offspring use begging displays to solicit resources from their parents and have been selected to grow fast to maximize survival. However, growth and begging behaviour are generally traded off against self‐maintenance. Oxidative stress, a physiological mediator of life‐history trade‐offs, may play a major role in this trade‐off by constraining, or being costly to, growth and begging behaviour. Yet, despite implications for the evolution of life‐history strategies and parent–offspring conflicts, the interplay between growth, begging behaviour and resistance to oxidative stress remains to be investigated. We experimentally challenged wild great tit (Parus major) offspring by infesting nests with a common ectoparasite, the hen flea (Ceratophyllus gallinae), and simultaneously tested for compensating effects of increased vitamin E availability, a common dietary antioxidant. We further quantified the experimental treatment effects on offspring growth, begging intensity and oxidative stress. Flea‐infested nestlings of both sexes showed reduced body mass during the first half of the nestling phase, but this effect vanished short before fledging. Begging intensity and oxidative stress of both sexes were unaffected by both experimental treatments. Feeding rates were not affected by the experimental treatments, but parents of flea‐infested nests fed nestlings with a higher proportion of caterpillars, the main source of antioxidants. Additionally, female nestlings begged significantly less than males in control nests, whereas both sexes begged at similar rates in vitamin E‐supplemented nests. Our study shows that a parasite exposure does not necessarily affect oxidative stress levels or begging intensity, but suggests that parents can compensate for negative effects of parasitism by modifying food composition. Furthermore, our results indicate that the begging capacity of the less competitive sex is constrained by antioxidant availability.  相似文献   

16.
A dramatic life history switch that has evolved numerous times in marine invertebrates is the transition from planktotrophic (feeding) to lecithotrophic (nonfeeding) larval development—an evolutionary tradeoff with many important developmental and ecological consequences. To attain a more comprehensive understanding of the molecular basis for this switch, we performed untargeted lipidomic and proteomic liquid chromatography‐tandem mass spectrometry on eggs and larvae from three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and the distantly related planktotroph Lytechinus variegatus. We identify numerous molecular‐level changes possibly associated with the evolution of lecithotrophy in H. erythrogramma. We find the massive lipid stores of H. erythrogramma eggs are largely composed of low‐density, diacylglycerol ether lipids that, contrary to expectations, appear to support postmetamorphic development and survivorship. Rapid premetamorphic development in this species may instead be powered by upregulated carbohydrate metabolism or triacylglycerol metabolism. We also find proteins involved in oxidative stress regulation are upregulated in H. erythrogramma eggs, and apoB‐like lipid transfer proteins may be important for echinoid oogenic nutrient provisioning. These results demonstrate how mass spectrometry can enrich our understanding of life history evolution and organismal diversity by identifying specific molecules associated with distinct life history strategies and prompt new hypotheses about how and why these adaptations evolve.  相似文献   

17.
The trade‐off between reproductive investment and lifespan is the single most important concept in life‐history theory. A variety of sources of evidence support the existence of this trade‐off, but the physiological costs of reproduction that underlie this relationship remain poorly understood. The Free Radical Theory of Ageing suggests that oxidative stress, which occurs when there is an imbalance between the production of damaging Reactive Oxygen Species (ROS) and protective antioxidants, may be an important mediator of this trade‐off. We sought to test this theory by manipulating the reproductive investment of female mice (Mus musculus domesticus) and measuring the effects on a number of life history and oxidative stress variables. Females with a greater reproductive load showed no consistent increase in oxidative damage above females who had a smaller reproductive load. The groups differed, however, in their food consumption, reproductive scheduling and mean offspring mass. Of particular note, females with a very high reproductive load delayed blastocyst implantation of their second litter, potentially mitigating the costs of energetically costly reproductive periods. Our results highlight that females use strategies to offset particularly costly periods of reproduction and illustrate the absence of a simple relationship between oxidative stress and reproduction.  相似文献   

18.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

19.
Reproduction is costly and life‐history theory predicts that current parental investment will result in lower survival or decreased future reproduction. The physiological mechanisms mediating the link between reproduction and survival are still under debate and elevated oxidative damage during reproduction has been proposed as a plausible candidate. Previous studies of oxidative stress during reproduction in animals under natural conditions have been restricted to analyses of blood. Herein, we measured the level of oxidative damage to lipids (tiobarbituric‐acid‐reactive substances) and proteins (carbonyls) in the liver, kidneys, heart and skeletal muscles in free‐living bank vole females from spring and autumn generations, before and after reproduction. Antioxidant defense in the liver and kidneys was also determined. We expected oxidative damage to tissues and hypothesized that the damage would be more uniform between tissues in wild animals compared to those breeding under laboratory conditions. Considering all combinations of markers/tissues/generations, oxidative damage in females did not differ before and after reproduction in 12 comparisons, was lower after reproduction in three comparisons, and was higher after breeding in one comparison. The total glutathione was significantly increased after reproduction only in the liver of the autumn generation and there was no change in catalase activity. Our results confirm—for the first time in the field—previous observations from laboratory studies that there is no simple link between oxidative stress and reproduction and that patterns depend on the tissue and marker being studied. Overall, however, our study does not support the hypothesis that the cost of reproduction in bank voles is mediated by oxidative stress in these tissues.  相似文献   

20.
A central objective of evolutionary biology is understanding variation in life‐history trajectories and the rate of aging, or senescence. Senescence can be affected by trade‐offs and behavioural strategies in adults but may also be affected by developmental stress. Developmental stress can accelerate telomere degradation, with long‐term longevity and fitness consequences. Little is known regarding whether variation in developmental stress and telomere dynamics contributes to patterns of senescence during adulthood. We investigated this question in the dimorphic white‐throated sparrow (Zonotrichia albicollis), a species in which adults of the two morphs exhibit established differences in behavioural strategy and patterns of senescence, and also evaluated the relationship between oxidative stress and telomere length. Tan morph females, which exhibit high levels of unassisted parental care, display faster reproductive senescence than white females, and faster actuarial senescence than all of the other morph–sex classes. We hypothesized that high oxidative stress and telomere attrition in tan female nestlings could contribute to this pattern, since tan females are small and potentially at a competitive disadvantage even as nestlings. Nestlings that were smaller than nest mates had higher oxidative stress, and nestlings with high oxidative stress and fast growth rates displayed shorter telomeres. However, we found no consistent morph–sex differences in oxidative stress or telomere length. Results suggest that oxidative stress and fast growth contribute to developmental telomere attrition, with potential ramifications for adults, but that developmental oxidative stress and telomere dynamics do not account for morph–sex differences in senescence during adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号