首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We and others have demonstrated that Fas-mediated apoptosis is a potential therapeutic target for cholangiocarcinoma. Previously, we reported that CaM (calmodulin) antagonists induced apoptosis in cholangiocarcinoma cells through Fas-related mechanisms. Further, we identified a direct interaction between CaM and Fas with recruitment of CaM into the Fas-mediated DISC (death-inducing signalling complex), suggesting a novel role for CaM in Fas signalling. Therefore we characterized the interaction of CaM with proteins recruited into the Fas-mediated DISC, including FADD (Fas-associated death domain)-containing protein, caspase 8 and c-FLIP {cellular FLICE [FADD (Fas-associated death domain)-like interleukin 1beta-converting enzyme]-like inhibitory protein}. A Ca(2+)-dependent direct interaction between CaM and FLIP(L), but not FADD or caspase 8, was demonstrated. Furthermore, a 37.3+/-5.7% increase (n=6, P=0.001) in CaM-FLIP binding was observed at 30 min after Fas stimulation, which returned to the baseline after 60 min and correlated with a Fas-induced increase in intracellular Ca(2+) that reached a peak at 30 min and decreased gradually over 60 min in cholangiocarcinoma cells. A CaM antagonist, TFP (trifluoperazine), inhibited the Fas-induced increase in CaM-FLIP binding concurrent with inhibition of ERK (extracellular-signal-regulated kinase) phosphorylation, a downstream signal of FLIP. Direct binding between CaM and FLIP(L) was demonstrated using recombinant proteins, and a CaM-binding region was identified in amino acids 197-213 of FLIP(L). Compared with overexpression of wild-type FLIP(L) that resulted in decreased spontaneous as well as Fas-induced apoptosis, mutant FLIP(L) with deletion of the CaM-binding region resulted in increased spontaneous and Fas-induced apoptosis in cholangiocarcinoma cells. Understanding the biology of CaM-FLIP binding may provide new therapeutic targets for cholangiocarcinoma and possibly other cancers.  相似文献   

2.
Previous studies have demonstrated that the microtubule - associated proteins MAP-2 and tau interact selectively with common binding domains on tubulin defined by the low-homology segments a (430–441) and (422–434). It has been also indicated that the synthetic peptide VRSKIGSTENLKHQPGGG corresponding to the first tau repetitive sequence represents a tubulin binding domain on tau. The present studies show that the calcium-binding protein calmodulin interacts with a tubulin binding site on tau defined by the second repetitive sequence VTSKCGSLGNIHHKPGGG. It was shown that both tubulin and calmodulin bind to tau peptide-Sepharose affinity column. Binding of calmodulin occurs in the presence of 1 mM Ca 2+ and it can be eluted from the column with 4 mM EGTA. These findings provide new insights into the regulation of microtubule assembly, since Ca 2+/calmodulin inhibition of tubulin polymerization into microtubules could be mediated by the direct binding of calmodulin to tau, thus preventing the interaction of this latter protein with tubulin.  相似文献   

3.
Lipid transfer proteins (LTPs) are a protein family found in plants with a variety of functions. In addition to lipid binding, LTPs also bind to calmodulin and Ca2+-dependent protein kinase (CDPK), which are calcium signal transducers. For the first time, we identified glyceraldehyde-3- phosphate dehydrogenase (GAPDH) as a novel binding protein of LTP-CaMBP10 in Chinese cabbage. This binding was confirmed using multiple biochemical approaches. The effects of this interaction on GAPDH activity were assessed for both recombinant and endogenous GAPDH proteins. LTP-CaMBP10 does not appear to affect nicotinamide adenine dinucleotide (NAD)-dependent GAPDH activity. In contrast, it significantly suppresses nicotinamide adenine dinucleotide phosphate (NADPH) consumption by GAPDH in a dosage-dependent manner. This result indicated a specific role of GAPDH in regulating LTP functions and implicating crosstalk between LTP-dependent and GAPDH-dependent biological events.  相似文献   

4.
Human epidermal growth factor receptor 2 (HER2), a member of the ErbB family of receptor tyrosine kinases, has defined roles in neoplastic transformation and tumor progression. Overexpression of HER2 is an adverse prognostic factor in several human neoplasms and, particularly in breast cancer, correlates strongly with a decrease in overall patient survival. HER2 stimulates breast tumorigenesis by forming protein-protein interactions with a diverse array of intracellular signaling molecules, and evidence suggests that manipulation of these associations holds therapeutic potential. To modulate specific HER2 interactions, the region(s) of HER2 to which each target binds must be accurately identified. Calmodulin (CaM), a ubiquitously expressed Ca2+ binding protein, interacts with multiple intracellular targets. Interestingly, CaM binds the juxtamembrane region of the epidermal growth factor receptor, a HER2 homolog. Here, we show that CaM interacts, in a Ca2+-regulated manner, with two distinct sites on the N-terminal portion of the HER2 intracellular domain. Deletion of residues 676-689 and 714-732 from HER2 prevented CaM-HER2 binding. Inhibition of CaM function or deletion of the CaM binding sites from HER2 significantly decreased both HER2 phosphorylation and HER2-stimulated cell growth. Collectively, these data suggest that inhibition of CaM-HER2 interaction may represent a rational therapeutic strategy for the treatment of patients with breast cancer. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

5.
Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect of calmodulin on Ras activation. Here we show that inhibition of calmodulin synergizes with diverse stimuli (epidermal growth factor, platelet-derived growth factor, bombesin, or fetal bovine serum) to induce ERK activation. Moreover, even in the absence of any added stimuli, activation of Ras by calmodulin inhibition was observed. To identify the calmodulin-binding protein involved in this process, calmodulin affinity chromatography was performed. We show that Ras and Raf from cellular lysates were able to bind to calmodulin. Furthermore, Ras binding to calmodulin was favored in lysates with large amounts of GTP-bound Ras, and it was Raf independent. Interestingly, only one of the Ras isoforms, K-RasB, was able to bind to calmodulin. Furthermore, calmodulin inhibition preferentially activated K-Ras. Interaction between calmodulin and K-RasB is direct and is inhibited by the calmodulin kinase II calmodulin-binding domain. Thus, GTP-bound K-RasB is a calmodulin-binding protein, and we suggest that this binding may be a key element in the modulation of Ras signaling.  相似文献   

6.
The three-dimensional solution structure of a nonspecific lipid transfer protein extracted from maize seeds determined by 1H NMR spectroscopy is described. This cationic protein consists of 93 amino acid residues. Its structure was determined from 1,091 NOE-derived distance restraints, including 929 interresidue connectivities and 197 dihedral restraints (phi, psi, chi 1) derived from NOEs and 3J coupling constants. The global fold involving four helical fragments connected by three loops and a C-terminal tail without regular secondary structures is stabilized by four disulfide bridges. The most striking feature of this structure is the existence of an internal hydrophobic cavity running through the whole molecule. The global fold of this protein, very similar to that of a previously described lipid transfer protein extracted from wheat seeds (Gincel E et al., 1994, Eur J Biochem 226:413-422) constitutes a new architecture for alpha-class proteins. 1H NMR and fluorescence studies show that this protein forms well-defined complexes in aqueous solution with lysophosphatidylcholine. Dissociation constants, Kd, of 1.9 +/- 0.6 x 10(-6) M and > 10(-3) M were obtained with lyso-C16 and -C12, respectively. A structure model for a lipid-protein complex is proposed in which the aliphatic chain of the phospholipid is inserted in the internal cavity and the polar head interacts with the charged side chains located at one end of this cavity. Our model for the lipid-protein complex is qualitatively very similar to the recently published crystal structure (Shin DH et al., 1995, Structure 3:189-199).  相似文献   

7.
Pathogenic Leptospira spp. express immunoglobulin-like proteins, LigA and LigB, which serve as adhesins to bind to extracellular matrices and mediate their attachment on host cells. However, nothing is known about the mechanism by which these proteins are involved in pathogenesis. We demonstrate that LigBCen2 binds Ca(2+), as evidenced by inductively coupled plasma optical emission spectrometry, energy dispersive spectrometry, (45)Ca overlay, and mass spectrometry, although there is no known motif for Ca(2+) binding. LigBCen2 binds four Ca(2+) as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The dissociation constant, K(D), for Ca(2+) binding is 7 mum, as measured by isothermal titration calorimetry and calcium competition experiments. The nature of the Ca(2+)-binding site in LigB is possibly similar to that seen in the betagamma-crystallin superfamily, since structurally, both families of proteins possess the Greek key type fold. The conformation of LigBCen2 was significantly influenced by Ca(2+) binding as shown by far- and near-UV CD and by fluorescence spectroscopy. In the apo form, the protein appears to be partially unfolded, as seen in the far-UV CD spectrum, and upon Ca(2+) binding, the protein acquires significant beta-sheet conformation. Ca(2+) binding stabilizes the protein as monitored by thermal unfolding by CD (50.7-54.8 degrees C) and by differential scanning calorimetry (50.0-55.7 degrees C). Ca(2+) significantly assists the binding of LigBCen2 to the N-terminal domain of fibronectin and perturbs the secondary structure, suggesting the involvement of Ca(2+) in adhesion. We demonstrate that LigB is a novel bacterial Ca(2+)-binding protein and suggest that Ca(2+) binding plays a pivotal role in the pathogenesis of leptospirosis.  相似文献   

8.
A rice lipid transfer protein binds to plasma membrane proteinaceous sites   总被引:1,自引:0,他引:1  
Nonspecific lipid transfer protein (nsLTP) is usually basic and secreted low-molecular-mass protein in plants. The 3-D structure of nsLTP1 resembles that of elicitin produced by the plant pathogen Phytophthora cryptogea, which can bind to the plant plasma membrane putative receptor and activate the downstream responses. It is inferred that nsLTP1 may have similar binding sites on the plasma membranes. In this work, rice recombinant protein TRX-nsLTP110 labeled with 125I was shown to bind to rice plasma membrane preparations in a saturable curve, with an apparent Kd of 13.6 nM and Bmax of 150 fmol/mg proteins. Competition experiments revealed that the binding of TRX-nsLTP110 was specific, in contrast to the nonspecific binding of the fusion tag thioredoxin. Protease treatment assay showed that the binding sites were proteinaceous. Our results suggest that the binding sites of nsLTPs on plasma membranes may be ubiquitous in the plant kingdom. They may be competed out from the binding sites under pathogen attack, supporting a role for nsLTP1 in host defense response to pathogens.  相似文献   

9.
Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly.  相似文献   

10.
Steroidogenic acute regulatory-related lipid transfer (START) domain proteins are involved in the nonvesicular intracellular transport of lipids and sterols. The STARD1 (STARD1 and STARD3) and STARD4 subfamilies (STARD4–6) have an internal cavity large enough to accommodate sterols. To provide a deeper understanding on the structural biology of this domain, the binding of sterols to STARD5, a member of the STARD4 subfamily, was monitored. The SAR by NMR [1H-15N heteronuclear single-quantum coherence (HSQC)] approach, complemented by circular dichroism (CD) and isothermal titration calorimetry (ITC), was used. Titration of STARD5 with cholic (CA) and chenodeoxycholic acid (CDCA), ligands of the farnesoid X receptor (FXR), leads to drastic perturbation of the 1H-15N HSQC spectra and the identification of the residues in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Ka values of 1.8·10−4 M−1 and 6.3·104 M−1 were measured for CA and CDCA, respectively. This is the first report of a START domain protein in complex with a sterol ligand. Our original findings indicate that STARD5 may be involved in the transport of bile acids rather than cholesterol.  相似文献   

11.
To assess the effect of lipids and lipid exchange in the pro-apoptotic release of cytochrome c, we investigated the ability of a plant lipid transfer protein (LTP) to initiate the apoptotic cascade at the mitochondrial level. The results show that maize LTP is able to induce cytochrome c release from the intermembrane space of mouse liver mitochondria without significant mitochondrial swelling, similarly to mouse full-length Bid. This effect is influenced by the presence of specific lipids, since addition of lysolipids like lysophosphatidylcholine strongly stimulates the LTP-induced release of cytochrome c while it is inhibited by removal of endogenous free lipids with a complete suppression of the LTP-induced release of cytochrome c. The results are discussed in light of the possible role of lipid exchange in apoptosis.  相似文献   

12.
Myostatin, a member of TGF-beta superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-beta and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn(2+) greater than 10microM, but not in the absence of Zn(2+). Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K(D)) of 2.02x10(-8)M and 9.36x10(-9)M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM.  相似文献   

13.
We previously reported that an isoform of microtubule-associated protein 4 (MAP4) is localized to the distal area of developing neurites, where microtubules are relatively scarce, raising the possibility that MAP4 interacts with another major cytoskeletal component, actin filaments. In the present study, we examined the in vitro interaction between MAP4 and actin filaments, using bacterially expressed MAP4 and its truncated fragments. Sedimentation assays revealed that MAP4 and its microtubule-binding domain fragments bind to actin filaments under physiological conditions. The apparent dissociation constant and the binding stoichiometry of the fragments to actin were about 0.1 μm and 1 : 3 (MAP4/actin), respectively. Molecular dissection studies revealed that the actin-binding site on MAP4 is situated at the C-terminal part of the proline-rich region, where the microtubule-binding site is also located. Electron microscopy revealed that the MAP4-bound actin filaments become straighter and longer and that the number of actin bundles increases with greater concentrations of added MAP4 fragment, indicating that MAP4 binding alters the properties of the actin filaments. A multiple sequence alignment of the proline-rich regions of MAP4 and tau revealed two putative actin-binding consensus sequences.  相似文献   

14.
Expansion of polyglutamine (pQ) chain by expanded CAG repeat causes dominantly inherited neurodegeneration such as Huntington disease, dentatorubral-pallidoluysian atrophy (DRPLA), and numbers of other spinocerebellar ataxias. Expanded pQ disrupts the stability of the pQ-harboring protein and increases its susceptibility to aggregation. Aggregated pQ protein is recognized by the ubiquitin proteasome system, and the enzyme ubiquitin ligase covalently attaches ubiquitin, which serves as a degradation signal by the proteasome. However, accumulation of the aggregated proteins in the diseased brain suggests insufficient degradation machinery. Ubiquitin has several functionally related proteins that are similarly attached to target proteins through its C terminus glycine residue. They are called ubiquitin-like molecules, and some of them are similarly related to the protein degradation pathway. One of the ubiquitin-like molecules, FAT10, is known to accelerate protein degradation through a ubiquitin-independent manner, but its role in pQ aggregate degradation is completely unknown. Thus we investigated its role in a Huntington disease cellular model and found that FAT10 molecules were covalently attached to huntingtin through their C terminus glycine. FAT10 binds preferably to huntingtin with a short pQ chain and completely aggregated huntingtin was FAT10-negative. In addition, ataxin-1,3 and DRPLA proteins were both positive for FAT10, and aggregation enhancement was observed upon FAT10 knockdown. These findings were similar to those for huntingtin. Our new finding will provide a new role for FAT10 in the pathogenesis of polyglutamine diseases.  相似文献   

15.
Progress in the cell cycle is governed by the activity of cyclin dependent kinases (Cdks). Unlike other Cdks, the Cdk5 catalytic subunit is found mostly in differentiated neurons. Interestingly, the only known protein that activates Cdk5 (i.e. p35) is expressed solely in the brain. It has been suggested that, besides its requirement in neuronal differentiation, Cdk5 activity is induced during myogenesis. However, it is not clear how this activity is regulated in the pathway that leads proliferative cells to differentiation. In order to find if there exists any Cdk5-interacting protein, the yeast two-hybrid system was used to screen a HeLa cDNA library. We have determined that a C-terminal 172 amino acid domain of the DNA binding protein, dbpA, binds to Cdk5. Biochemical analyses reveal that this fragment (dbpA(Cdelta)) strongly inhibits p35-activated Cdk5 kinase. The protein also interacts with Cdk4 and inhibits the Cdk4/cyclin D1 enzyme. Surprisingly, dbpA(Cdelta) does not bind Cdk2 in the two-hybrid assay nor does it inhibit Cdk2 activated by cyclin A. It could be that dbpA's ability to inhibit Cdk5 and Cdk4 reflects an apparent cross-talk between distinct signal transduction pathways controlled by dbpA on the one hand and Cdk5 or Cdk4 on the other.  相似文献   

16.
The beta-galactoside-binding protein galectin-3 has pleiotropic biological functions and has been implicated in cell growth, differentiation, adhesion, RNA processing, apoptosis, and malignant transformation. Galectin-3 may be phosphorylated at N-terminal Ser(6), but the role of phosphorylation in determining interactions of this endogenous lectin with its ligands remains to be elucidated. We therefore studied the effect of phosphorylation on binding of galectin-3 to two of its reported ligands, laminin and purified colon cancer mucin. Human recombinant galectin-3 was phosphorylated in vitro by casein kinase I, and separated from the native species by isoelectric focusing for use in solid phase binding assays. Non-phosphorylated galectin-3 bound to laminin and asialomucin in a dose-dependent manner with half-maximal binding at 1.5 microg/ml. Phosphorylation reduced saturation binding to each ligand by >85%. Ligand binding could be fully restored by dephosphorylation with protein phosphatase type 1. Mutation of galectin-3 at Ser(6) (Ser to Glu) did not alter galectin ligand binding. Metabolic labeling or separation by isoelectric focusing confirmed the presence of phosphorylated galectin-3 species in vivo in the cytosol of human colon cancer cells from which ligand mucin was purified. Phosphorylation significantly reduces the interaction of galectin-3 with its ligands. The process by which phosphorylation modulates protein-carbohydrate interactions has important implications for understanding the biological functions of this protein, and may serve as an "on/off" switch for its sugar binding capabilities.  相似文献   

17.
We studied the temporal and spatial pattern of lipid transfer protein (LTP) gene expression, as well as the localization of this protein, in maize. Using an LTP gene, we observed an accumulation of LTP mRNA in embryos and endosperms during seed maturation. LTP gene expression was also investigated in young seedlings. After germination, the level of LTP mRNA in the coleoptile increased, with a maximum at 7 days, whereas LTP mRNA levels were low in the scutellum and negligible in roots. The high levels of LTP mRNA found in coleoptiles and embryos were confirmed by in situ hybridization. Moreover, LTP gene expression appeared to be localized in the external cellular layers and around the leaf veins. Using immunogold methods, we also observed that LTP was distributed heterogeneously in the different cells of coleoptiles and leaves. The highest concentrations of LTP were found in the outer epidermis of the coleoptiles as well as the leaf veins. Together, our observations indicate that LTP gene expression is not only organ specific and time specific but also cell specific.  相似文献   

18.
Establishment of the left-right asymmetry of internal organs is essential for the normal development of vertebrates. The inv mutant in mice shows a constant reversal of left-right asymmetry and although the inv gene has been cloned, its biochemical and cell biological functions have not been defined. Here, we show that calmodulin binds to mouse inv protein at two sites (IQ1 and IQ2). The binding of calmodulin to the IQ2 site occurs in the absence of Ca(2+) and is not observed in the presence of Ca(2+). Injection of mouse inv mRNA into the right blastomere of Xenopus embryos at the two-cell stage randomized the left-right asymmetry of the embryo and altered the patterns of Xnr-1 and Pitx2 expression. Importantly, inv mRNA that lacked the region encoding the IQ2 site was unable to randomize left-right asymmetry in Xenopus embryos, implying that the IQ2 site is essential for inv to randomize left-right asymmetry in Xenopus. These results suggest that calmodulin binding may regulate inv function. Based on our findings, we propose a model for the regulation of inv function by calcium-calmodulin and discuss its implications.  相似文献   

19.
The interconnections between cholesteryl ester transfer protein (CETP) expression and lipid metabolism, and the possible roles of CETP in atherogenesis are examined. The importance of lipid transfer inhibitor protein in modulating CETP activity is detailed, and the consequences of this inhibitory activity on CETP-mediated events are proposed.  相似文献   

20.
The structure of a nonspecific lipid transfer protein from barley (ns-LTPbarley) in complex with palmitate has been determined by NMR spectroscopy. The structure has been compared to the structure of ns-LTPbarley in the absence of palmitate, to the structure of ns-LTPbarley in complex with palmitoyl coenzyme A, to the structure of ns-LTPmaize in its free form, and to the maize protein complexed with palmitate. Binding of palmitate only affects the structure of ns-LTPbarley moderately in contrast to the binding of palmitoyl coenzyme A, which leads to a considerable expansion of the protein. The modes of binding palmitate to the maize and barley protein are different. Although in neither case there are major conformational changes in the protein, the orientation of the palmitate in the two proteins is exactly opposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号