首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luu KX  Kanugula S  Pegg AE  Pauly GT  Moschel RC 《Biochemistry》2002,41(27):8689-8697
Activity of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) is an important source of tumor cell resistance to alkylating agents. AGT inhibitors may prove useful in enhancing chemotherapy. AGT is inactivated by reacting stoichiometrically with O(6)-benzylguanine (b(6)G), which is currently in clinical trials for this purpose. Short oligodeoxyribonucleotides containing a central b(6)G are more potent inactivators of AGT than b(6)G. We examined whether human AGT could react with oligodeoxyribonucleotides containing multiple b(6)G residues. The single-stranded 7-mer 5'-d[T(b(6)G)(5)G]-3' was an excellent AGT substrate with all five b(6)G adducts repaired although one adduct was repaired much more slowly. The highly b(6)G-resistant Y158H and P140K AGT mutants were also inactivated by 5'-d[T(b(6)G)(5)G]-3'. Studies with 7-mers containing a single b(6)G adduct showed that 5'-d[TGGGG(b(6)G)G]-3' was more poorly repaired by wild-type AGT than 5'-d[T(b(6)G)GGGGG]-3' and 5'-d[TGG(b(6)G)GGG]-3' and was even less repairable by mutants Y158H and P140K. This positional effect was unaffected by interchanging the terminal 5'- or 3'-nucleotides and was also observed with single-stranded 16-mer oligodeoxyribonucleotides containing O(6)-methylguanine, where a minimum of four nucleotides 3' to the lesion was required for the most efficient repair. Annealing with the reverse complementary strands to produce double-stranded substrates increased the ability of AGT to repair adducts at all positions except at positions 2 and 15. Our results suggest that AGT recognizes the polarity of single-stranded DNA, with the best substrates having an adduct adjacent to the 5'-terminal residue. These findings will aid in designing novel AGT inhibitors that incorporate O(6)-alkylguanine adducts in oligodeoxyribonucleotide contexts.  相似文献   

2.
O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs.  相似文献   

3.
Fang Q  Kanugula S  Pegg AE 《Biochemistry》2005,44(46):15396-15405
O6-Alkylguanine-DNA alkyltransferase (AGT) is an important DNA repair protein that protects from alkylating agents by converting O6-alkylguanine to guanine forming S-methylcysteine in the AGT protein. The crystal structure of human AGT shows clearly the presence of two domains. The N-terminal domain contains a bound zinc atom, and zinc binding confers a mechanistic enhancement to repair activity, but this domain has no known function. The C-terminal domain contains all residues so far implicated in alkyl transfer including the cysteine acceptor site (Cys145), the O6-alkylguanine binding pocket, and a DNA binding domain. We have expressed and purified the two domains of human AGT separately. The C-terminal domain was totally inactive in vitro, but good activity forming S-alkylcysteine at Cys145 was obtained after recombination with the N-terminal domain via a freeze-thawing procedure. This suggests that the N-terminal domain plays a critical structural role in maintaining an active configuration of the C-terminal domain. However, this C-terminal domain alone had activity in protecting against the cytotoxic and mutagenic activity of the methylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) when expressed in Escherichia coli cells lacking endogenous AGT, suggesting that other proteins can fulfill this function. Remarkably, the free N-terminal domain of hAGT was able to repair O6-alkylguanine in vitro via alkyl transfer provided that zinc ions were present. The N-terminal domain was also able to produce moderate protection from MNNG when expressed in E. coli. This cryptic Zn2+-dependent DNA repair activity may be relevant to the evolution and function of AGTs.  相似文献   

4.
Pegg AE  Fang Q  Loktionova NA 《DNA Repair》2007,6(8):1071-1078
This article summarizes the current understanding of known variant forms of the MGMT gene that encode an altered protein. Epidemiological studies have been carried out to test whether these alterations are associated with altered cancer risk. Laboratory studies using recombinant proteins and cells expressing the known variants have investigated the possible effects of these sequence alterations on the ability of the encoded O(6)-alkylguanine-DNA alkyltransferase protein to protect cells from alkylation damage and to respond to therapeutic inactivators currently undergoing trials for cancer chemotherapy.  相似文献   

5.
A recent crystallographic study of recombinant human O(6)-alkylguanine-DNA alkyltransferase (hAGT) revealed a previously unknown zinc atom [Daniels et al., (2000) EMBO J. 19, 1719-1730]. The effects of zinc on the properties of hAGT are reported here. In bacterial expression systems, recombinant hAGT was produced in increasingly larger quantities when growth media are supplemented with up to 0.1 mM ZnCl(2). Metal-enriched hAGT samples had a 5-fold increase in repair rate constant over conventionally purified protein samples and a 60-fold increase over metal-stripped hAGT. In addition, mutants of the zinc-binding residues had decreases in zinc occupancy that correlated with reductions in repair rate. Zinc modulation did not abolish the repair capacity of a fraction of the hAGT population, as evidenced by the stoichiometric reaction with an oligodeoxyribonucleotide substrate. Zinc occupancy had a similar effect on the rate of reaction with O(6)-benzylguanine, a free base substrate, as on the repair of methylated DNA. Differentially zinc-treated hAGTs showed the same affinity for binding to native DNA and substrate oligodeoxyribonucleotides. Metal content manipulations had little effect upon the CD spectrum of hAGT, but fluorescence studies revealed a small conformational change based upon metal binding, and zinc occupancy correlated with enhanced hAGT stability as evidenced by resistance to the denaturing effects of urea. These results indicate that the presence of zinc confers a mechanistic enhancement to repair activity that does not result from an increase in substrate binding affinity. Zinc also provides conformational stability to hAGT that may influence its regulation.  相似文献   

6.
Alkyl adducts at the O6-position of guanine constitute promutagenic DNA lesions likely to be involved in the initiation of malignant transformation. They can be removed by a cellular acceptor protein termed O6-alkylguanine-DNA alkyltransferase (AT). In rat liver this repair enzyme can be induced by a variety of hepatotoxins, partial hepatectomy and X-irradiation. This paper describes a stimulation of the hepatic AT by treatment of rats with the radiomimetic agent, bleomycin. Induction of AT is dose-dependent up to 20 mg bleomycin/kg and appears to level off with higher doses. Enhancement of O6-meG repair is detectable within 24 h after a single i.p. injection. Maximum AT induction was reached after 6 days and amounted to 350% of the control levels. The enhancement of AT activity is not associated with acute liver injury and initially coincides with an inhibition of [3H]deoxythymidine incorporation into hepatic DNA. This indicates that AT induction in rat liver is not necessarily dependent on tissue necrosis with increased cell replication. Since bleomycin does not produce DNA lesions recognized and repaired by the AT, the hypothesis is entertained that AT induction by these agents is part of a concerted reaction to radiation-type DNA damage.  相似文献   

7.
Crystal structure of the human O(6)-alkylguanine-DNA alkyltransferase   总被引:2,自引:1,他引:2  
The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to O6-alkylation of guanine in DNA. This lesion results in transition mutations. In both prokaryotic and eukaryotic cells, repair is effected by direct reversal of the damage by a suicide protein, O6-alkylguanine-DNA alkyltransferase. The alkyltransferase removes the alkyl group to one of its own cysteine residues. However, this mechanism for preserving genomic integrity limits the effectiveness of certain alkylating anticancer agents. A high level of the alkyltransferase in many tumour cells renders them resistant to such drugs. Here we report the X-ray structure of the human alkyltransferase solved using the technique of multiple wavelength anomalous dispersion. This structure explains the markedly different specificities towards various O6-alkyl lesions and inhibitors when compared with the Escherichia coli protein (for which the structure has already been determined). It is also used to interpret the behaviour of certain mutant alkyltransferases to enhance biochemical understanding of the protein. Further examination of the various models proposed for DNA binding is also permitted. This structure may be useful for the design and refinement of drugs as chemoenhancers of alkylating agent chemotherapy.  相似文献   

8.
The reaction of partially purified human O6-alkylguanine-DNA alkyltransferase with 1,3-bis(2-chloroethyl)-1-nitrosourea-treated DNA resulted in formation of a DNA-protein covalent complex. Complex formation required active alkyltransferase and brief treatment of DNA with the drug. DNA lost its capacity to form the complex once drug-induced DNA interstrand cross-links were completely formed. These results are consistent with a model in which the transferase catalyzes cleavage at O6-guanine and transfer of the alkyl moiety in a putative O6, N1-ethanoguanine intermediate of cross-link formation. DNA-protein complex formation presumably results when the transferase accepts the N1-ethanoguanine-DNA structure, analogous to its acceptance of simple alkyl groups.  相似文献   

9.
O6-alkylguanine-DNA alkyltransferase (AGT) is a DNA-repair protein that reverses the effects of alkylating agents by removing DNA adducts from the O6-position of guanine. We developed a real-time AGT assay that utilizes a fluorescent guanosine analog (3-methylisoxantopterin, 3-MI). 3-MI fluorescence is quenched in DNA and fluorescence intensity increases substantially with digestion of the oligonucleotide and release of 3-MI. The substrate is a doubled-stranded oligonucleotide with 3'-overhangs on each end and a PvuII recognition site. PvuII is inhibited by O6-methylguanine, positioned within the restriction site. 3-MI is incorporated in the opposite strand just outside of the PvuII restriction site. AGT repairs O6-methylguanine; PvuII cleaves at its restriction site, yielding a blunt-ended double strand, which is then digested by exonuclease III. This releases 3-MI from the oligonucleotide, resulting in an increase in fluorescence intensity. All reaction components (100-microL volume) are monitored in a single microcuvette. Rate of increase in fluorescence intensity is related to the amount of AGT in the reaction mixture. We measured AGT levels in extracts from a leukemia cell line, from leukemic lymphoblasts from patients, and from peripheral blood mononuclear cells from normal controls. This method may prove useful for mechanistic studies of AGT.  相似文献   

10.
Repair of DNA interstrand cross-links   总被引:24,自引:0,他引:24  
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs.  相似文献   

11.
The O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. Here we characterize the binding of AGT to single-stranded DNAs ranging in length from 5 to 78 nucleotides (nt). Binding is moderately cooperative (37.9 +/- 3.0 相似文献   

12.
Rates of individual steps in the removal of alkyl groups from O6-methyl (Me) and -benzyl (Bz) guanine in oligonucleotides by human O6-alkylguanine DNA alkyltransferase (AGT) were estimated using rapid reaction kinetic methods. The overall reaction yields hyperbolic plots of rate versus AGT concentration for O6-MeG but linear plots for the O6-BzG reaction, which is approximately 100-fold faster. The binding of AGT and DNA (double-stranded 30-mer/36-mer complex) appears to be diffusion-limited. The rate of dissociation of the complex is approximately 25-fold slower (approximately 1 s(-1)) for DNA containing O6-MeG or O6-BzG than unmodified DNA. The fluorescent dC-analog 6-methylpyrrolo[2,3-d]pyrimidine-2(3H) one deoxyribonucleoside (pyrrolo dC), which pairs with G, was positioned opposite G, O6-MeG, or O6-BzG and used as a probe of the rate of base flipping. A rapid increase of fluorescence (k approximately 200 s(-1)) was observed with O6-MeG and O6-BzG and AGT but not with a Gly mutation at Arg128, which has been implicated in base flipping with crystal structures. Only weak and slower fluorescence changes were observed with G:pyrrolo dC or T:2-aminopurine pairs. These rate estimates were used in a kinetic model in which AGT binds and scans DNA rapidly, flips O6-alkylG residues, transfers the alkyl group in a chemical step that is rate-limiting in the case of O6-MeG but not O6-BzG, and releases the dealkylated DNA. The results explain the overall patterns of rates of alkyl group removal versus AGT concentration and the effects of the mutations, as well as the greater affinity of AGT for DNA with O6-alkylG lesions.  相似文献   

13.
O(6)-Alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O(6)-alkylguanine and O(4)-alkylthymine adducts in DNA, protecting the genome and also contributing to the resistance of tumors to chemotherapeutic alkylating agents. AGT binds DNA cooperatively, and cooperative interactions are likely to be important in lesion search and repair. We examined morphologies of complexes on long, unmodified DNAs, using analytical ultracentrifugation and atomic force microscopy. AGT formed clusters of ≤11 proteins. Longer clusters, predicted by the McGhee-von Hippel model, were not seen even at high [protein]. Interestingly, torsional stress due to DNA unwinding has the potential to limit cluster size to the observed range. DNA at cluster sites showed bend angles (~0, ~30 and ~60°) that are consistent with models in which each protein induces a bend of ~30°. Distributions of complexes along the DNA are incompatible with sequence specificity but suggest modest preference for DNA ends. These properties tell us about environments in which AGT may function. Small cooperative clusters and the ability to accommodate a range of DNA bends allow function where DNA topology is constrained, such as near DNA-replication complexes. The low sequence specificity allows efficient and unbiased lesion search across the entire genome.  相似文献   

14.
The DNA in human cells is continuously undergoing damage as consequences of both endogenous processes and exposure to exogenous agents. The resulting structural changes can be repaired by a number of systems that function to preserve genome integrity. Most pathways are multicomponent, involving incision in the damaged DNA strand and resynthesis using the undamaged strand as a template. In contrast, O(6)-alkylguanine-DNA alkyltransferase is able to act as a single protein that reverses specific types of alkylation damage simply by removing the offending alkyl group, which becomes covalently attached to the protein and inactivates it. The types of damage that ATase repairs are potentially toxic, mutagenic, recombinogenic and clastogenic. They are generated by certain classes of carcinogenic and chemotherapeutic alkylating agents. There is consequently a great deal of interest in this repair system in relation to both carcinogenesis and cancer chemotherapy.  相似文献   

15.
The presence of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) paradoxically increases the mutagenicity and cytotoxicity of 1,2-dibromoethane (DBE) in Escherichia coli. This enhancement of genotoxicity did not occur when the inactive C145A mutant of human AGT (hAGT) was used. Also, hAGT did not enhance the genotoxicity of S-(2-haloethyl)glutathiones that mimic the reactive product of the reaction of DBE with glutathione, which is catalyzed by glutathione S-transferase. These experiments support a mechanism by which hAGT activates DBE. Studies in vitro showed a direct reaction between purified recombinant hAGT and DBE resulting in a loss of AGT repair activity and a formation of an hAGT-DBE conjugate at Cys(145). A 2-hydroxyethyl adduct was found by mass spectrometry to be present in the Gly(136)-Arg(147) peptide from tryptic digests of AGT reacted with DBE. Incubation of AGT with DBE and oligodeoxyribonucleotides led to the formation of covalent AGT-oligonucleotide complexes. These results indicate that DBE reacts at the active site of AGT to generate an S-(2-bromoethyl) intermediate, which forms a highly reactive half-mustard at Cys(145). In the presence of DNA, the DNA-binding function of AGT facilitates formation of DNA adducts. In the absence of DNA, the intermediate undergoes hydrolytic decomposition to form AGT-Cys(145)-SCH(2)CH(2)OH.  相似文献   

16.
The protein O 6-alkylguanine-DNA alkyltransferase(alkyltransferase) is involved in the repair of O 6-alkylguanine and O 4-alkylthymine in DNA and plays an important role in most organisms in attenuating the cytotoxic and mutagenic effects of certain classes of alkylating agents. A genomic clone encompassing the Drosophila melanogaster alkyltransferase gene ( DmAGT ) was identified on the basis of sequence homology with corresponding genes in Saccharomyces cerevisiae and man. The DmAGT gene is located at position 84A on the third chromosome. The nucleotide sequence of DmAGT cDNA revealed an open reading frame encoding 194 amino acids. The MNNG-hypersensitive phenotype of alkyltransferase-deficient bacteria was rescued by expression of the DmAGT cDNA. Furthermore, alkyltransferase activity was identified in crude extracts of Escherichia coli harbouring DmAGT cDNA and this activity was inhibited by preincubation of the extract with an oligonucleotide containing a single O6-methylguanine lesion. Similar to E.coli Ogt and yeast alkyltransferase but in contrast to the human alkyltransferase, the Drosophila alkyltransferase is resistant to inactivation by O 6-benzylguanine. In an E.coli lac Z reversion assay, expression of DmAGT efficiently suppressed MNNG-induced G:C-->A:T as well as A:T-->G:C transition mutations in vivo. These results demonstrate the presence of an alkyltransferase specific for the repair of O 6-methylguanine and O 4-methylthymine in Drosophila.  相似文献   

17.
18.
The efficacy of agents that alkylate the O-6 position of guanine is inhibited by O(6)-alkylguanine-DNA alkyltransferase (AGT) which removes these lesions from the tumor DNA. To increase differential toxicity, inhibitors must selectively deplete AGT in tumors, while sparing normal tissues where this protein serves a protective function. A newly synthesized prodrug of the AGT inhibitor O(6)-benzylguanine (O(6)-BG) with an α,α-dimethyl-4-nitrobenzyloxycarbonyl moiety masking the essential 2-amino group has demonstrated the feasibility of targeting hypoxic regions that are unique to solid tumors, for drug delivery. However, these modifications resulted in greatly decreased solubility. Recently, new potent global AGT inhibitors with improved formulatability such as O(6)-[(3-aminomethyl)benzylguanine (1) have been developed. However, acetylamino (N-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)acetamide) (2) exhibits a pronounced decrease in activity. Thus, 1 would be inactivated by N-acetylation and probably N-glucuronidation. To combat potential conjugational inactivation while retaining favorable solubility, we synthesized 6-((3-((dimethylamino)methyl)benzyl)oxy)-9H-purin-2-amine (3) in which the 3-aminomethyl moiety is protected by methylation; and to impart tumor selectivity we synthesized 2-(4-nitrophenyl)propan-2-yl(6-((3-((dimethylamino)methyl)benzyl)oxy)-9H-purin-2-yl)carbamate (7), a hypoxia targeted prodrug of 3 utilizing an α,α-dimethyl-4-nitrobenzyloxycarbonyl moiety. Consistent with this design, 7 demonstrates both hypoxia selective conversion by EMT6 cells of 7 to 3 and hypoxic sensitization of AGT containing DU145 cells to the cytotoxic actions of laromustine, while exhibiting improved solubility.  相似文献   

19.
T E Spratt  J D Wu  D E Levy  S Kanugula  A E Pegg 《Biochemistry》1999,38(21):6801-6806
O6-Alkylguanine-DNA alkyltransferase (AGT) repairs DNA by transferring the methyl group from the 6-position of guanine to a cysteine residue on the protein. We previously found that the Escherichia coli Ada protein makes critical interactions with O6-methylguanine (O6mG) at the N1- and O6-positions. Human AGT has a different specificity than the bacterial protein. We reacted hAGT with double-stranded pentadecadeoxynucleotides containing analogues of O6mG. The second-order rate constants were in the following order (x10(-)5 M-1 s-1): O6mG (1.4), O6-methylhypoxanthine (1.6) > Se6-methyl-6-selenoguanine (0.1) > S6-methyl-6-thioguanine (S6mG) (0.02) > S6-methyl-6-thiohypoxanthine (S6mH), O6-methyl-1-deazaguanine (O6m1DG), O6-methyl-3-deazaguanine (O6m3DG), and O6-methyl-7-deazaguanine (O6m7DG) (all <0.0001). Electrophoretic mobility shift assays were carried out to determine the binding affinity to hAGT. Oligodeoxynucleotides containing O6mG, S6mG and O6m3DG bound to AGT in the presence of competitor DNA with Kd values from 5 to 20 microM, while those containing G, S6mH, O6m1DG, and O6m7DG did not (Kd > 200 microM). These results indicate that the 1-, N2-, and 7- positions of O6mG are critical in binding to hAGT, while the 3- and O6-positions are involved in methyl transfer. These results suggest that the active site of ada AGT is more flexible than hAGT and may be the reason ada AGT reacts with O4mT faster than hAGT.  相似文献   

20.
Guengerich FP  Fang Q  Liu L  Hachey DL  Pegg AE 《Biochemistry》2003,42(37):10965-10970
The active site cysteine of human O(6)-alkylguanine-DNA alkyltransferase (hAGT), Cys145, was shown to be highly reactive with model electrophiles unrelated to substrates, including 1-chloro-2,4-dinitrobenzene. The high reactivity suggested that the Cys145 thiolate anion might be stable at neutral pH. The pK(a) was estimated from plots of UV spectra (A(239)) and reactivity toward 4,4'-dithiopyridine vs pH. The estimated pK(a) for hAGT was 4-5, depending upon the method used, and near that of the extensively characterized papain Cys25. Rates of reaction with 4,4'-dithiopyridine were similar for the thiolate forms of hAGT, papain, glutathione, and the bacterial hAGT homologue Ogt (the pK(a) of the latter was 5.4). Bound Zn(2+) has previously been shown to be required for the catalytic activity of hAGT (Rasimas, J. J. et al. (2003) Biochemistry 42, 980-990). Zn(2+) was shown to be required for the low pK(a) of hAGT. The high reactivity of hAGT Cys145 is postulated to be important in normal catalytic function, in cross-linking reactions involving bis-electrophiles, and in inhibition of the DNA repair function of hAGT by electrophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号