首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Lipid homeostasis is controlled by various nuclear receptors (NRs), including the peroxisome proliferator-activated receptors (PPARalpha, delta, and gamma), which sense lipid levels and regulate their metabolism. Here we demonstrate that human PPARs have a high basal activity and show ligand-independent coactivator (CoA) association comparable with the NR constitutive androstane receptor. Using PPARgamma as an example, we found that four different amino acid groups contribute to the ligand-independent stabilization of helix 12 of the PPAR ligand-binding domain. These are: (i) Lys329 and Glu499, mediating a charge clamp-type stabilization of helix 12 via a CoA bridge; (ii) Glu352, Arg425, and Tyr505, directly stabilizing the helix via salt bridges and hydrogen bonds; (iii) Lys347 and Asp503, interacting with each other as well as contacting the CoA; and (iv) His351, Tyr(355), His477, and Tyr501, forming a hydrogen bond network. These amino acids are highly conserved within the PPAR subfamily, suggesting that the same mechanism may apply for all three PPARs. Phylogenetic trees of helix 12 amino acid and nucleotide sequences of all crystallized NRs and all human NRs, respectively, indicated a close relationship of PPARs with constitutive androstane receptor and other constitutive active members of the NR superfamily. Taking together, the ligand-independent tight control of the position of the PPAR helix 12 provides an effective alternative for establishing an interaction with CoA proteins. This leads to high basal activity of PPARs and provides an additional view on PPAR signaling.  相似文献   

4.
Dietary long chain fatty acids and thiazolidinediones act as potent activators of adipogenesis in established preadipose cell lines. High concentrations of thiazolidinediones have also been shown to induce terminal differentiation of non-preadipose cells, such as fibroblasts and myoblasts, into adipose-like cells. This transdifferentiation was observed in both rodent and human myoblasts. In this report, we show that PPARdelta mediates some of the effects exerted by long chain fatty acids on myogenesis and adipogenesis. Activation of PPARdelta by long chain fatty acids impairs the expression of the determination factor MyoD1 and alpha-actin, abolishes the development of multinucleated myotubes, and in parallel induces the expression of PPARgamma gene, a master regulator of adipogenesis. Ectopic expression of PPARdelta in C2C12 myoblasts potentiated the fatty acid-induced expression of adipogenic markers, while expression of a dominant negative PPARdelta mutant exerted opposite effects. Furthermore, a sequential activation of first PPARdelta with long chain fatty acids and then PPARgamma with thiazolidinediones is required for adipogenesis in C2C12 myoblasts. This study demonstrates that PPARdelta, at least in part, is responsible for the dual effects of long chain fatty acids as inhibitors of myogenesis and inducers of transdifferentiation into preadipose-like cells.  相似文献   

5.
The expression of peroxisome proliferator-activated receptors alpha (PPARalpha) and gamma (PPARgamma) was studied in the human adenocarcinoma Caco-2 cells induced to differentiate by long term culture (15 days). The differentiation of Caco-2 cells was attested by increases in the activities of sucrase-isomaltase and alkaline phosphatase (two brush border enzymes), fatty acyl-CoA oxidase (AOX) and catalase (two peroxisomal enzymes), by an elevation in the protein levels of villin (a brush border molecular marker), AOX, peroxisomal bifunctional enzyme (PBE), catalase and peroxisomal membrane protein of 70 kDa (PMP70). and by the appearance of peroxisomes. The expression of PPARalpha and PPARgamma was investigated by Western blotting, immunocytochemistry, Northern blotting and S1 nuclease protection assay during the differentiation of Caco-2 cells. The protein levels of PPARalpha, PPARgamma, and PPARgamma2 increased gradually during the time-course of Caco-2 cell differentiation. Immunocytochemistry revealed that PPARalpha and gamma were localized in cell nuclei. The PPARgamma1 protein was encoded by PPARgamma3 mRNA because no signal was obtained for PPARgamma1 mRNA using a specific probe in S1 nuclease protection assay. The amount of PPARgamma3 mRNA increased concomitantly to the resulting PPARgamma1 protein. On the other hand, the mRNA of PPARalpha and PPARgamma2 were not significantly changed, suggesting that the increase in their respective protein was due to an elevation of the translational rate. The role played by the PPAR subtypes in Caco-2 cell differentiation is discussed.  相似文献   

6.
Investigating metabolism by unveiling the functions of the nuclear receptors peroxisome proliferator-activated receptors (PPARs) in the numerous intricate pathways ensuring energy homeostasis and fitness has been extremely rewarding. Major lines of research were initially determined by the first-characterized crucial roles of PPARalpha in fatty oxidation and of PPARgamma in adipocyte differentiation and lipid storage. Today, the molecular bases of the functional links between glucose, lipid, and protein metabolism, under the important but nonexclusive control of PPARalpha and PPARgamma, are starting to be uncovered. In addition, in the last couple of years evidence has been provided for an important role of PPARbeta (delta) in lipid metabolism. Inevitably, such actors of metabolic homeostasis are implicated in the physiopathology of complex metabolic disorders, such as those constituting the metabolic syndrome, resulting in atherosclerosis and cardiovascular diseases. This review presents a summary of the recent findings on their dual involvement in health and disease.  相似文献   

7.
8.
9.
10.
Taiwanofungus camphoratus (T. camphoratus), a fungus and a Taiwan-specific, well-known traditional Chinese medicine, has long been used to treat diarrhea, hypertension, itchy skin, and liver cancer. To gain a large amount of T. camphoratus, several culture techniques have been developed, including solid-state culture and liquid-state fermentation. Peroxisome proliferator-activated receptor gamma (PPARgamma) has been described as a hypoglycemic agent that increases insulin sensitivity in peripheral tissues and results in reduced blood glucose, insulin, and triglyceride levels in insulin-resistant animals and in type-2 (non-insulin-dependent) diabetic patients. In this study, we investigate the possibility that T. camphoratus might activate PPARgamma in vitro and hypolipidemic activity in vivo. The results show that an aqueous extract of the wild fruiting bodies of T. camphoratus was able to increase the PPARgamma activity in cells transfected with the PPARgamma expression plasmid and the AOx-TK reporter plasmid. Based on the cell experiment, we examined the hypolipidemic effect of wild fruiting bodies (WFT) and a solid-state culture (SST) of T. camphoratus on SD rats fed on a high-cholesterol (HC) diet. The results show that WFT significantly decreased the serum triglyceride level, but could not affect the cholesterol level. SST only slightly decreased the serum triglyceride level. In addition, both WFT and SST significantly decreased the serum alanine transaminase (ALT) level and protected against the liver damage induced by the HC diet from the results of a histological examination. These results suggest that T. camphoratus might contain PPARgamma ligands and result in a hypotriglyceridemic effect, and that it also exhibits a liver protective activity.  相似文献   

11.
12.
Cervical resistance to dilatation was measured in 76 patients undergoing first trimester legal abortion; a specially designed force-sensing instrument was used. No correlation between cervical resistance and patient age or gestational age was found. Increasing parity and earlier legal abortions were significantly correlated with a lowering of the cervical resistance. In patients dilated to 11 mm a lowering of resistance was noted suggesting a tear in cervical tissue.  相似文献   

13.
14.
15.
16.
17.
We investigated the spatiotemporal distributions of the different peroxisome proliferator-activated receptor (PPAR) isotypes (alpha, beta, and gamma) during development (Week 7 to Week 22 of gestation) of the human fetal digestive tract by immunohistochemistry using specific polyclonal antibodies. The PPAR subtypes, including PPARgamma, are expressed as early as 7 weeks of development in cell types of endodermal and mesodermal origin. The presence of PPARgamma was also found by Western blotting and nuclease-S1 protection assay, confirming that this subtype is not adipocyte-specific. PPARalpha, PPARbeta, and PPARgamma exhibit different patterns of expression during morphogenesis of the digestive tract. Whatever the stage and the gut region (except the stomach) examined, PPARgamma is expressed at a high level, suggesting some fundamental role for this receptor in development and/or physiology of the human digestive tract.  相似文献   

18.
19.
Gliobastoma (GB), the most common adult brain tumor, infiltrates normal brain area rendering impossible the complete surgical resection, resulting in a poor median survival (14–15 months), despite the aggressive multimodality treatments post‐surgery, such as radiation and chemo‐therapy. GB is characterized by hypoxic and necrotic regions due to a poorly organized tumor vascularization, leading to inadequate blood supply and consequently to hypoxic and necrotic areas. We have previously shown that, under hypoxia GB primary cells increased the expression of stemness markers as well as the expression of the nuclear receptor peroxisome proliferator‐activated receptor α (PPARα) and also the crucial role played by PPARs in mouse neural stem cells maintenance and differentiation. Due to the importance of lipid signaling in cell proliferation and differentiation, in this work, we analyzed the expression of PPARs in GB neurospheres both in normoxic and hypoxic conditions. The results obtained suggest a differential regulation of the three PPARs by hypoxia, thus indicating a possible therapeutic strategy to counteract GB recurrencies. J. Cell. Biochem. 113: 3342–3352, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
20-carboxy-arachidonic acid (20-COOH-AA) is a metabolite of 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid produced from arachidonic acid by cytochrome P450 (CYP) omega-oxidases. Alcohol dehydrogenases convert 20-HETE to 20-COOH-AA, and we now find that a microsomal preparation containing recombinant human CYP4F3B converts arachidonic acid to 20-HETE and 20-COOH-AA. Studies with transfected COS-7 cell expression systems indicate that 20-COOH-AA activates peroxisome proliferators-activated receptor (PPAR) alpha and PPARgamma. 20-COOH-AA was twice as potent as either 20-HETE or ciglitazone in stimulating PPARgamma-mediated luciferase expression. While 20-COOH-AA also was more potent than 20-HETE in increasing PPARalpha-mediated luciferase expression, the increase was only half as much as that produced by Wy-14643. 20-COOH-AA did not increase PPARalpha or PPARgamma expression in the transfected cells. Radiolabeled 20-COOH-AA was detected intracellularly when the COS-7 cells were incubated with either [3H]20-COOH-AA or [3H]20-HETE, and binding studies indicated that [3H]20-COOH-AA bound to the isolated ligand binding domains of PPARalpha (Kd=0.87+/-0.12 microM) and PPARgamma (Kd=1.7+/-0.5 microM). These findings suggest that 20-COOH-AA, a relatively stable metabolite of 20-HETE, might function as an endogenous dual activator of PPARalpha and PPARgamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号