首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three eulittoral algae(Ulva lactuca, Porphyra umbilicalis, Chondrus crispus) and one sublittoral alga(Laminaria saccharina) from Helgoland (North Sea) were cultivated in a flow-through system at different temperatures, irradiances and daylengths. In regard to temperature there was a broad optimum at 10–15° C, except inP. umbilicalis, which grew fastest at 10 °C. A growth peak at this temperature was also found in four of 17 other North Sea macroalgae, for which the growth/temperature response was studied, whereas 13 of these species exhibited a growth optimum at 15 °C, or a broad optimum at 10–15 °C. Growth was light-saturated inU. lactuca, L. saccharina andC. crispus at photon flux densities above 70 µE m–2s–1, but inP. umbilicalis above 30 µE m–2s–1. Growth rate did not decrease notably in the eulittoral species after one week in relatively strong light (250 µE m–2s–1), but by about 50 % in the case of the sublittoralL. saccharina, as compared with growth under weak light conditions (30 µE m–2s–1). In contrast, chlorophyll content decreased in the sublittoral as well as in the eulittoral species, and the greatest change in pigment content occurred in the range 30–70 µE m–2s–1. Growth rate increased continuously up to photoperiods of 24 h light per day inL. saccharina andC. crispus, whereas daylength saturation occurred at photoperiods of more than 16 h light per day inU. lactuca andP. umbilicalis.  相似文献   

2.
Summary We have devised a method whereby any mutagenized cloned DNA from Bacillus subtilis can be reinserted at the original site on the B. subtilis chromosome. The procedure depends on the accuracy and high frequency of homologous recombination between the B. subtilis chromosome and the DNA taken up by the cell. The method makes use of two drug resistance selection markers (the chloramphenicol resistance gene and the neomycin resistance gene) and a marker gene which functions as a catalyst. The utility of the method has been demonstrated using leuB and pro of B. subtilis as target gene and catalyst, respectively, and mutations such as leuB: : cat, leuB , and pro: : neo constructed in vitro on the cloned DNA fragments. Transformation in sequential steps as (leuB + pro+)(leuB: : cat pro +) (leuB pro: : neo)(leuB pro +) resulted in a leuB single mutant without affecting other regions of the B. subtilis chromosome (gene-directed mutagenesis). We also demonstrate that other single mutations such as metD and pro , as well as the double mutation leuB pro can be introduced by the same procedure. In principle, true isogenies with multiple mutations can be constructed by the method described in this paper. Furthermore, the procedure should be generally applicable to any organisms in which homologous recombination is proficient.  相似文献   

3.
Summary This paper describes the use of chlorate resistant mutants in genetic analysis of Aspergillus niger. The isolated mutants could be divided into three phenotypic classes on the basis of nitrogen utilization. These were designated nia, nir and cnx as for Aspergillus nidulans. All mutations were recessive to their wild-type allele in heterokaryons as well as in heterozygous diploids. The mutations belong to nine different complementation groups. In addition a complex overlapping complementation group was found. Evidence for the existence of eight linkage groups was obtained. Two linked chlorate resistance mutations and two tryptophan auxotrophic markers, which were unlinked to any of the known markers (Goosen et al. 1989), form linkage group VIII. We used the chlorate resistance mutations as genetic markers for the improvement of the mitotic linkage map of A. niger. We determined the linear order of three markers in linkage group VI as well as the position of the centromere by means of direct selection of homozygous cnxA1 recombinants. In heterozygous diploid cultures diploid chlorate resistant segregants appeared among conidiospores with a frequency of 3.9×10–2 (cnxG13 in linkage group I) to 2.1 × 10–2 (cnxD6 in linkage group 111). The mean frequency of haploid chlorate resistant segregants was 1.3 × 10–3. The niaD1 and niaD2 mutations were also complemented by transformation with the A. niger niaD + gene cloned by Unkles et al. (1989). Mitotic stability of ten Nia+ transformants was determined. Two distinct stability classes were found, showing revertant frequencies of 5.0 × 10–3 and 2.0 × 10–5 respectively.  相似文献   

4.
We collected the ephemeral macrophyte Ruppia drepanensis Tin. ex Guss. from the athalassic shallow lake Fuente de Piedra (Málaga. Southern Spain). This lake, situated in an endorheic basin, shows great seasonal changes in depth and Total Dissolved Solids (TDS).Dissolved oxygen evolution studied in the laboratory at 17 different photon flux densities (PFD) showed a maximum rate of photosynthesis of 0.55 mg C g dry wt–1 h–1, a light compensation point at 86 µE m–2 s–1 and a saturation point at 333 µE m–2 s–1. A moderate photoinhibition (\ = 1.68 10–4) was found above 695 µE m–2 s–1.Estimates of pigment concentrations revealed 10 times more carotenoids than chlorophyll.The adaptation of the plants to high irradiances and to the particular features of their hypersaline environment are discussed.  相似文献   

5.
Summary Strains with mutations in 23 of the 30 genes and open reading frames in the major nif gene cluster of A. vinelandii were tested for ability to grow on N-free medium with molybdenum (Nif phenotype), with vanadium (Vnf phenotype), or with neither metal present (Anf phenotype). As reported previously, nifE, nifty, nifU, nifS and nifV mutants were Nif (failed to grow on molybdenum) while nifM mutants were Nif, Vnf and Anf. nifV, nifS, and nifU mutants were found to be unable to grow on medium with or without vanadium, i.e. were Vnf Anf. Therefore neither vnf nor anf analogoues of nifU, nifS, nifV or nifM are expected to be present in A. vinelandii.  相似文献   

6.
In our earlier paper, it was demonstrated that the FecA receptor protein from Escherichia coli UT5600/pBB2 (leu , proC , trpE , entA , rpsl , (ompT-fepA)/Ampr, fepA) binds with ferric enterobactin. In order to explore this further the outer membrane receptor protein, FecA, has been isolated from UT5600 (fepA ) and purified to homogeneity by DE-52-cellulose anion exchange chromatography followed by MonoPFPLC chromatofocusing. Partially purified FecA and homogeneous FecA show binding activity to [55Fe]ferric enterobactin and the binding is specific. Binding activity of FecA can be enhanced by ferric citrate. Lipopolysaccharide-free FecA as ascertained by silver staining and the endotoxin test still retains the same activity. In vivo uptake studies using different strains of E. coli suggest that FecA in E. coli plays an important role in ferrienterobactin transport.  相似文献   

7.
Multiple-equilibrium equations were solved to investigate the individual and separate effects of Mg2+, Mn2+, Ca2+, ATP4–, and their complexes on the kinetics of brain adenylate cyclase. The effects of divalent metals and/or ATP4– (in excess of their participation in complex formation) were determined and, from the corresponding apparent affinity values, the following kinetic constants were obtained:K m(MgATP)=1.0 mM,K i(ATP4–)=0.27 mM,K m(MnATP)=0.07 mM, andK i(CaATP)=0.015 mM. MgATP, MnATP, ATP4–, and CaATP were shown to compete for the active site of the enzyme. Hence, it is proposed that endogenous metabolites with a strong ligand activity for divalent metals, such as citrate and some amino acids, become integrated into a metabolite feedback control of the enzyme through the release of ATP4– from MgATP. Ca2+ fluxes may participate in the endogenous regulation of adenylate cyclase by modifying the level of CaATP. The free divalent metals show an order of affinityK 0.5(Ca2+)=0.02 mM,K 0.5(Mn2+)=3.8 mM,K 0.5(Mg2+)=4.7 mM, and an order of activity Mn2+>Mg2+>Ca2+. The data indicate that Mn2+ and Mg2+ ions may compete for a regulatory site distinct from the active site and increaseV m without changingK m(MgATP),K m(MnATP), orK i(ATP4–). The interactions of ATP4– and CaATP, which act as competitive inhibitors of the reaction of the enzyme with the substrates MgATP and MnATP, and Mg2+ and Mn2+, which act as activators of the enzyme in the absence of hormones, are shown to follow the random rapid equilibrium BiBi group-transfer mechanism of Cleland with the stipulation that neither Mg2+ nor Mn2+, in excess of their respective participation in substrate formation, are obligatorily required for basal activity. ATP4– and CaATP are involved in dead-end inhibition. For MgCl2 saturation curves at constant total ATP concentration, the computer-generated curves based on the RARE BiBi model predict a change in the Hill cooperativityh from a basal value of 2.6, when Mg2+ is not obligatorily required, to 4.0 when the addition of hormones or neurotransmitters induces an obligatory requirement for Mg2+.Abbreviations used: Me, divalent metal; MeT (MgT or MnT), total Me (Me2+ and its complexes); ATPT, total ATP (ATP4– and its complexes).  相似文献   

8.
The genes xpk1 and xpk2(Δ1–21) encoding phosphoketolase-1 and (Δ1–7)-truncated phosphoketolase-2 have been cloned from Lactobacillus plantarum and expressed in Escherichia coli. Both gene-products display phosphoketolase activity on fructose-6-phosphate in extracts. A N-terminal His-tag construct of xpk2(Δ1–21) was also expressed in E. coli and produced active His-tagged (Δ1–7)-truncated phosphoketolase-2 (hereafter phosphoketolase-2). Phosphoketolase-2 is activated by thiamine pyrophosphate (TPP) and the divalent metal ions Mg2+, Mn2+, or Ca2+. Kinetic analysis and data from the literature indicate the activators are MgTPP, MnTPP, or CaTPP, and these species activate by an ordered equilibrium binding pathway, with Me2+TPP binding first and then fructose-6-phosphate. Phosphoketolase-2 accepts either fructose-6-phosphate or xylulose-5-phosphate as substrates, together with inorganic phosphate, to produce acetyl phosphate and either erythrose-4-phosphate or glyceraldehyde-3-phosphate, respectively. Steady state kinetic analysis of acetyl phosphate formation with either substrate indicates a ping pong kinetic mechanism. Product inhibition patterns with erythrose-4-phosphate indicate that an intermediate in the ping pong mechanism is formed irreversibly. Background mechanistic information indicates that this intermediate is 2-acetyl-TPP. The irreversibility of 2-acetyl-TPP formation might explain the overall irreversibility of the reaction of phosphoketolase-2.  相似文献   

9.
Summary The chemical carcinogen N-acetoxy-N-2-acetylaminofluorene induces mainly frameshift mutations, which occur within two types of sequences (mutation hot spots): –1 frameshift mutations within contiguous guanine sequences and –2 frameshift mutations within alternating GC sequences such as the NarI and BssHII restriction site sequences. We have investigated the genetic control of mutagenesis at these sequences by means of a reversion assay using plasmids pW17 and pX2, which contain specific targets for contiguous guanine and alternating GC sequences, respectively. Our results suggest that mutations at these hot spot sequences are generated by two different genetic pathways, both involving induction of SOS functions. The two pathways differ both in their LexA-controlled gene and RecA protein requirements. In the mutation pathway that acts at contiguous guanine sequences, the RecA protein participates together with the umuDC gene products. In contrast, RecA is not essential for mutagenesis at alternating GC sequences, except to cleave the LexA repressor. The LexA-regulated gene product(s), which participate in this latter mutational pathway, do not involve umuDC but another as yet uncharacterized inducible function. We also show that wild-type RecA and RecA430 proteins exert an antagonistic effect on mutagenesis at alternating GC sequences, which is not observed either in the presence of activated RecA (RecA*), RecA730 or RecA495 proteins, or in the complete absence of RecA as in recA99. It is concluded that the –1 mutation pathway presents the same genetic requirements as the pathway for UV light mutagenesis, while the –2 mutation pathway defines a distinct SOS pathway for frameshift mutagenesis.  相似文献   

10.
The experiments described here delineate the position of the chromosome 16 markers Igl-1(immunoglobulin 1 light chain), md (mahoganoid), and Bst (belly spot and tail), and suggest their location relative to the endogenous proviral locus Akv-2, which is linked within 5.9 centimorgans to Igl-1 (Epstein et al. 1984). The data from an intercross and a three-point backcross detailed herein show the order of these three genes and distances between them to be: centromere-md –10.4 ± 1.6 - Igl-1 –15.6 ± 2.6 - Bst. Using a recombinant chromosome recovered in the intercross, we have constructed a stock homozygous for md and Igl-1 b(KpnI), that will aid in mapping other genes on chromosome 16.In previous publications, alleles at the structural locus have been referred to as + and –. To conform to standard mouse nomenclature, we propose here the allele symbols a for + and b for –. We refer to genes encoding immunoglobulin molecules (i. e., v, c) in lower case letters, while the gene products are capitalized  相似文献   

11.
Fluorescence Detected Magnetic Resonance (FDMR) spectra have been measured for whole cells and isolated chlorosomal fractions for the green photosyntheic bacteria Chlorobium phaeobacteroides (containing bacteriochlorophyll e, and isorenieratene as major carotenoid) and Chlorobium limicola (containing bacteriochlorophyll c, and chlorobactene as major carotenoid). The observed transition at 237 MHz (identical in both bacteria) and > 1100 MHz can be assigned, by analogy with published data on other carotenoids, to the 2E and D + E transitions, respectively, of Chlorobium carotenoids. Their zero field splitting (ZFS) parameters are estimated to be: |D|=0.0332 cm–1 and |E|=0.0039 cm–1 (chlorobactene), and |D|=0.0355 cm–1 and |E|=0.0039 cm–1 (isorenieratene). In the intermediate frequency range 300–1000 MHz the observed transitions can be assigned to chlorosomal bacteriochlorophylls c and e, and to bacteriochlorophyll a located in the chlorosome envelope and water-soluble protein. The bacteriochlorophyll e triplet state measured in 750 nm fluorescence (aggregated chlorosomal BChl e) is characterised by the ZFS parameters: |D|=0.0251 cm–1 and |E|=0.0050 cm–1.Abbreviations BChl - bacteriochlorophyll - BPh - bacteriopheophytin - Chl. - Chlorobium - F(A)(O)DMR - fluorescence (absorption) (optical) detected magnetic resonance - FF - fluorescence fading - ISC - intramolecular intersystem crossing - RC - reaction center - ZFS - zero field splitting  相似文献   

12.
We first identified GTP cyclohydrolase I activity (EC 3.5.4.16) in the ciliated protozoa, Tetrahymena pyriformis. The Vmax value of the enzyme in the cellular extract of T. pyriformis was 255 pmol mg−1 protein h−1. Michaelis–Menten kinetics indicated a positive cooperative binding of GTP to the enzyme. The GTP concentration producing half-maximal velocity was 0.8 mM. By high-performance liquid chromatography (HPLC) with fluorescence detection, a major peak corresponding to -monapterin (2-amino-4-hydroxy-6-[(1′R,2′R)-1′,2′,3′-trihydroxypropyl]pteridine, -threo-neopterin) and minor peaks of -erythro-neopterin and -erythro-biopterin were found to be present in the cellular extract of Tetrahymena. Thus, it is strongly suggested that Tetrahymena converts GTP into unconjugated pteridine derivatives. In this study, dopamine was detected as the major catecholamine, while neither epinephrine nor norepinephrine was identified. Indeed, this protozoa was shown to possess the activity of a dopamine synthesizing enzyme, aromatic -amino acid decarboxylase. On the other hand, activities of tyrosine hydroxylase or tyrosinase which converts tyrosine into dopa, the substrate of aromatic -amino acid decarboxylase, could not be detected in this protozoa. Furthermore, neither dopamine β-hydroxylase activity nor phenylethanolamine N-methyltransferase activity could be identified by the HPLC methods.  相似文献   

13.
Antarctic fishes were sampled with 41 midwater and 6 benthic trawls during the 1999–2000 austral summer in the eastern Ross Sea. The oceanic pelagic assemblage (0–1,000 m) contained Electrona antarctica, Gymnoscopelus opisthopterus, Bathylagus antarcticus, Cyclothone kobayashii and Notolepis coatsi. These were replaced over the shelf by notothenioids, primarily Pleuragramma antarcticum. Pelagic biomass was low and concentrated below 500 m. The demersal assemblage was characteristic of East Antarctica and included seven species each of Artedidraconidae, Bathydraconidae and Channichthyidae, ten species of Nototheniidae, and three species each of Rajidae and Zoarcidae. Common species were Trematomus eulepidotus (36.5%), T. scotti (32.0%), Prionodraco evansii (4.9%), T. loennbergii (4.7%) and Chaenodraco wilsoni (4.3%). Diversity indices were highest for tows from 450 to 517 m (H=1.90–2.35). Benthic biomass ranged from 0.7 to 3.5 t km–2. It was generally higher in tows from 450 to 517 m (0.9–2.0 t km–2) although the highest biomass occurred at an inner-shelf station (238 m) due to large catches of T. eulepidotus, T. scotti and P. evansii.  相似文献   

14.
Summary We used a system with a mobilized Stalker transposable element, sometimes in combination with P-M hybrid dysgenesis, in the search for new mutations interfering with the y 2 mutation induced by mdg4 (gypsy) insertion into the yellow locus. A novel gene, modifier of mdg4, was detected in chromosome 3. The mutation mod(mdg4) either enhanced or suppressed phenotypic changes in different mutations induced by mdg4 insertions. Thus, mod(mdg4) seems to be involved in the control of mdg4 expression. Six other loci designated as enhancers of yellow were also detected. The e(y) n (with n from 1–6) mutations enhanced the expression of several y mutations induced by different insertions into the yellow locus. The major change is a damage of bristle and hair pigmentation which is not suppressed by su(Hw) mutations. On the other hand, e(y) n alleles do not interact with mdg4 induced mutations in other loci. All e(y) n genes are located in different regions of the X chromosome. One may speculate that e(y) n genes are involved in trans-regulation of the yellow locus and possibly of some other loci.  相似文献   

15.
Kinetic data of ferrous iron oxidation by Thionacillus ferrooxidans were determined. The aim was to remove H2S (<0.5 ppm) from waste gas by a process proposed earlier. Kinetic data necessary for industrial scale-up were investigated in a chemostat airlift reactor (dilution rate 0.02–0.12 h–1; pH 1.3). Due to the low pH, ferric iron precipitation and wall growth could be avoided. The maximum ferrous iron oxidation rate of submersed bacteria was 0.77 g 1–1 h–1, the maximum specific growth rate about 0.12 h–1 and the yield coefficient was found to be 0.007 g g–1 Fe2+. The specific O2 demand of an exponentially growing, ironoxidizing batch culture was 1.33 mg O2 mg–1 biomass h–1. The results indicate that a pH of 1.3 has no negative influence on the kinetics of iron oxidation and growth. Correspondence to: W. Schäfer-Treffenfeldt  相似文献   

16.
A comparative study has been carried out with FDP aldolases fromEscherichia coli 518 andLactobacillus casei ATCC 7469, which had been purified 17.6- and 65-fold, respectively. The aldolase ofL.casei was stable only in the presence of mercaptoethanol, whereas that ofE.coli was strongly inhibited at low (1.0×10–4 m) and activated at high concentrations (2.0×10–1 m) of the same compound.p-Chloromercuric benzoic acid inhibited both aldolases, with 40% inhibition at 2×10–5 m withE.coli aldolase against at 2×10–4 m withL.casei aldolase. Significant differences were also observed in pH optima and Km values.E.coli aldolase exhibited a maximal activity at pH 9.0 and gave a Km value of 1.76×10–3 m FDP with strong substrate inhibition above 7×10–3 m, against pH 6.8–7.0 and a Km of 7.04×10–3 m FDP forL.casei aldolase. Strong resistance ofL.casei aldolase against inhibition by EDTA, Ca2+ and Mn2+ was observed compared with complete inhibition at concentrations of 20mm, 40mm and 20mm, respectively, withE. coli aldolase. Polyacrylamide gel electrophoresis did not reveal any differences between the two enzyme preparations.The differences of the properties of FDP aldolases from different bacterial genera are discussed in relation to other Class II aldolases.  相似文献   

17.
Clostridium botulinum produce the antigenically distinct 150 kD neurotoxin serotypes (e.g., A, B, C1, and E) and simultaneously proteins, A Hn+, B Hn+, C Hn+, and E Hn, that have high, low, and no hemagglutinating activity. A Hn+ and B Hn+ are serologically cross-reactive. A Hn+, B Hn+, and C Hn+ found as large aggregates (900–220 kD) can be dissociated on SDS-PAGE into multiple subunits, the smallest for A Hn+, B Hn+ is 17 kD and 27 kD for C Hn+. The 116 kD E Hn does not aggregate. We determined the sequences of 10–33 amino terminal residues of the 17, 21.5, 35, and 57 kD subunits of A Hn+ and B Hn+. Each of these subunits have unique sequences, indicating that the larger units studied are not homomers or heteromers of smaller units. The subunits of A Hn+ and B Hn+ of comparable size have striking sequence identity (e.g., 21.5 kD subunits from the two are identical and 57 kD subunits have 80% identity).In vitro proteolysis of 116 kD E Hn with different proteases did not impart hemagglutinating activity to the fragments. The 116 kD E Hn and one of its proteolytic fragments (87 kD) were partially sequenced. Sixty-two base pairs downstream from the termination codon of the cloned 33 kD subunit of C Hn+, there is an initiation codon followed by an open reading frame for at least 34 amino acid residues (Tsuzukiet al., 1990). The derived amino acid sequence of this open reading frame, we found, has 73–84% sequence identity with those of the 17 kD subunits of A Hn+ and B Hn+ and significant identity with the N-terminal of E Hn. These highly conserved sequences show existence of genetic linkage among the Hn+ and Hn proteins.  相似文献   

18.
Summary This study is concerned with the short-circuit current,I sc, responses of the Cl-transporting cells of toad skin submitted to sudden changes of the external Cl concentration. [Cl]0. Sudden changes of [Cl]0, carried out under apical membrane depolarization, allowed comparison of the roles of [Cl]0 and [Cl]cell on the activation of the apical Cl pathways. Equilibration of shortcircuited skins symmetrically in K-Ringer's solutions of different Cl concentrations permitted adjustment of [Cl]cell to different levels. For a given Cl concentration (in the range of 11.7 to 117mm) on both sides of a depolarized apical membrane, this structure exhibits a high Cl permeability,P (Cl)apical. On the other hand, for the same range of [Cl]cell but with [Cl]0=0,P (Cl)apical is reduced to negligible values. These observations indicate that when the apical membrane is depolarizedP (Cl)apical is modulated by [Cl]0; in the absence of external Cl ions, intracellular Cl is not sufficient to activateP (Cl)apical. Computer simulation shows that the fast Cl currents induced across the apical membrane by sudden shifts of [Cl]0 from a control equilibrium value strictly follow the laws of electrodiffusion. For each experimental group, the computer-generatedI sc versus ([Cl]cell–[Cl]0) curve which best fits the experimental data can only be obtained by a unique pair ofP (Cl)apical andR b (resistance of the basolateral membrane), thus allowing the calculation of these parameters. The electrodiffusional behavior of the net Cl flux across the apical membrane supports the channel nature of the apical Cl pathways in the Cl-transporting cell. Cl ions contribute significantly to the overall conductance of the basolateral membrane even in the presence of a high K concentration in the internal solution.  相似文献   

19.
Summary A collection of Schizosaccharomyces pombe mutants has been obtained which restore activity to a nonsense suppressing tRNA sup3–5 whose suppressing function has been inactivated by second site mutations within the sup3–5 gene. These mutants were screened for those that were temperature sensitive in suppressing the opal nonsense allele ade6-704. Some of these map within or close to sup3 itself and others define two allosuppressor genes sal2 and sal3. The temperature sensitive mutants fail to efficiently suppress any other opal nonsense alleles although one mutant, sup3–5, r57, rr2, weakly does so at the low temperature. sal2 and sal3 mutants have a pleiotropic effect on the cell cycle causing a transient or complete blockage of mitosis. This blockage and the allosuppressor phenotypes are both eliminated by the presence of wee mutations in wee1 or cdc2. Mutants in sal2 are allelic with cdc25, a gene required for successful completion of mitosis. It is suggested that sal3 and cdc25 influence the mechanism that links the growth rate of the cell with the initiation of mitosis. Mutants in these genes may disturb tRNA biosynthesis or protein synthesis and this disruption may have an effect on both nonsense suppression and the growth rate control over mitosis.  相似文献   

20.
Olaveson  M. M.  Nalewajko  C. 《Hydrobiologia》2000,433(1-3):39-56
Our study separates the effects of elevated protons (at pH <3) and elevated metals (Al, Cd, Cu, Fe, Ni, Zn) on the growth of E. mutabilis Schmitz, a pioneering phototroph in acid mine drainage (AMD) and E. gracilis Klebs, a closely-related species rarely found in severely AMD-impacted sites. Both species were acid tolerant, growing optimally at pH 2.5–7. At pH values typical of AMD (pH 2.5–4) in the absence of elevated metals, E. gracilis outcompeted E. mutabilis (growth rates of 1.0 and 0.8 div d–1, respectively). Relative metal toxicities were evaluated based on the Effective Exposure causing 50% growth reduction (= EE50). With total metal additions similar to AMD levels, E. mutabilis demonstrated significantly greater tolerance to all metals, except Cu. E. gracilis showed two-fold higher tolerance to Cu2+ than E. mutabilis (EE50 of 91.6 vs. 45.7 pmol cell–1). The EE50 for Zn2+ was similar for both species (368 pmol cell–1 for E. gracilis and 423 pmol cell–1 for E. mutabilis). With Cd and Ni, E. mutabilis tolerated an order of magnitude higher exposure than E. gracilis(EE50 of 1.6 vs. 0.2 pmol Cd2+ cell–1; EE50 of 942 vs. 87 pmol Ni2+ cell–1). Al and Fe were tolerated at high total metal concentrations (up to 100 mM) by E. mutabilis, but toxicity was evident with E. gracilisat much lower levels. E. mutabilis grew at double the Al3+ exposure tolerated by E. gracilis (EE50 of 398 vs. 188 pmol Al3+ cell–1). There was an 18-fold difference in Fe tolerance levels between E. mutabilis and E. gracilis with EE50s of 8773 and 502 pmol Fe2+ cell–1, respectively. We conclude that differential metal tolerance, particularly to Fe2+, accounts for the mutually exclusive distribution of E. gracilis and E. mutabilis in AMD-impacted habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号