首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characters of the thorax of 30 representatives of all endopterygote orders and four hemimetabolous outgroup taxa were examined. In total, 126 characters potentially useful for phylogenetic reconstruction are discussed and presented as a data matrix. The thoracic features were analysed with different approaches combined with an additional large set of morphological data. Endopterygota were confirmed as monophyletic and new morphological autapomorphies of the group are suggested. The highly controversial Strepsiptera are not placed as sistergroup of Diptera (Halteria‐concept) but consistently as sistergroup of Coleoptera. This clade was mainly supported by characters associated with posteromotorism. The traditionally proposed relationship of Neuropterida + Coleoptera was not confirmed. Hymenoptera was placed as sistergroup of all remaining orders in parsimony analyses. The inclusion of Strepsiptera + Coleoptera in Mecopterida in parsimony analyses is probably artificial and potential thoracic autapomorphies of Mecopterida in the traditional sense are suggested. Mecopterida are confirmed as a clade in Bayesian analyses. Amphiesmenoptera and Antliophora are well supported. The paraphyly of Mecoptera is due to a clade comprising Nannochoristidae and Siphonaptera + Diptera. The phylogenetic reconstruction using characters of the thorax is impeded by functional constraints, parallel losses, a general trend to reinforce the skeleton and to simplify the muscular apparatus, and also by different specializations occurring in potential outgroup taxa. The addition of a large additional morphological data set only partly compensated for these problems. It is apparent that the inclusion of more outgroup and ingroup taxa is required, notably presumably basal representatives of Mecoptera, Trichoptera, and Diptera. This may reduce the effect of an artificial attraction of branches caused by homoplasy, notably character losses occurring within different lineages.© The Willi Hennig Society 2010.  相似文献   

2.
Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects.  相似文献   

3.
Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of congruence. Phylogenetic trees were generated by parsimony analysis, and clade robustness was evaluated by branch length, Bremer support, percentage of extra steps required to force paraphyly, and sensitivity analysis using the following parameters: gap weights, morphological character weights, methods of data set combination, removal of key taxa, and alignment region. The following are monophyletic under most or all combinations of parameter values: Holometabola, Polyphaga, Megaloptera + Raphidioptera, Neuroptera, Hymenoptera, Trichoptera, Lepidoptera, Amphiesmenoptera (Trichoptera + Lepidoptera), Siphonaptera, Siphonaptera + Mecoptera, Strepsiptera, Diptera, and Strepsiptera + Diptera (Halteria). Antliophora (Mecoptera + Diptera + Siphonaptera + Strepsiptera), Mecopterida (Antliophora + Amphiesmenoptera), and Hymenoptera + Mecopterida are supported in the majority of total evidence analyses. Mecoptera may be paraphyletic because Boreus is often placed as sister group to the fleas; hence, Siphonaptera may be subordinate within Mecoptera. The 18S sequences for Priacma (Coleoptera: Archostemata), Colpocaccus (Coleoptera: Adephaga), Agulla (Raphidioptera), and Corydalus (Megaloptera) are nearly identical, and Neuropterida are monophyletic only when those two beetle sequences are removed from the analysis. Coleoptera are therefore paraphyletic under almost all combinations of parameter values. Halteria and Amphiesmenoptera have high Bremer support values and long branch lengths. The data do not support placement of Strepsiptera outside of Holometabola nor as sister group to Coleoptera. We reject the notion that the monophyly of Halteria is due to long branch attraction because Strepsiptera and Diptera do not have the longest branches and there is phylogenetic congruence between molecules, across the entire parameter space, and between morphological and molecular data.  相似文献   

4.
5.
6.
We present the largest morphological character set ever compiled for Holometabola. This was made possible through an optimized acquisition of data. Based on our analyses and recently published hypotheses based on molecular data, we discuss higher‐level phylogeny and evolutionary changes. We comment on the information content of different character systems and discuss the role of morphology in the age of phylogenomics. Microcomputer tomography in combination with other techniques proved highly efficient for acquiring and documenting morphological data. Detailed anatomical information (356 characters) is now available for 30 representatives of all holometabolan orders. A combination of traditional and novel techniques complemented each other and rapidly provided reliable data. In addition, our approach facilitates documenting the anatomy of model organisms. Our results show little congruence with studies based on rRNA, but confirm most clades retrieved in a recent study based on nuclear genes: Holometabola excluding Hymenoptera, Coleopterida (= Strepsiptera + Coleoptera), Neuropterida excl. Neuroptera, and Mecoptera. Mecopterida (= Antliophora + Amphiesmenoptera) was retrieved only in Bayesian analyses. All orders except Megaloptera are monophyletic. Problems in the analyses are caused by taxa with numerous autapomorphies and/or inapplicable character states due to the loss of major structures (such as wings). Different factors have contributed to the evolutionary success of various holometabolan lineages. It is likely that good flying performance, the ability to occupy different habitats as larvae and adults, parasitism, liquid feeding, and co‐evolution with flowering plants have played important roles. We argue that even in the “age of phylogenomics”, comparative morphology will still play a vital role. In addition, morphology is essential for reconstructing major evolutionary transformations at the phenotypic level, for testing evolutionary scenarios, and for placing fossil taxa.
© The Willi Hennig Society 2010.  相似文献   

7.
Many extant insects have developed pad structures, euplantulae or arolia on their tarsi to increase friction or enhance adhesion for better mobility. Many polyneopteran insects with euplantulae, for example, Grylloblattodea, Mantophasmatodea and Orthoptera, have been described from the Mesozoic. However, the origin and evolution of stick insects' euplantulae are poorly understood due to rare fossil records. Here, we report the earliest fossil records of Timematodea hitherto, Tumefactipes prolongates gen. et sp. nov. and Granosicorpes Urates gen. et sp. nov., based on three specimens from mid-Cretaceous Burmese amber. Specimens of Tumefactipes prolongates gen. et sp. nov. have extremely specialized and expanded euplantulae on their tarsomere II. These new findings are the first known and the earliest fossil records about euplantula structure within Phasmatodea, demonstrating the diversity of euplantulae in Polyneoptera during the Mesozoic. Such tarsal pads might have increased friction and helped these mid-Cretaceous stick insects to climb more firmly on various surfaces, such as broad leaves, wetted tree branches or ground. These specimens provide more morphological data for us to understand the relationships of Timematodea, Euphasmatodea, Orthoptera and Embioptera, suggesting that Timematodea might be monophyletic with Euphasmatodea rather than Embioptera and Phasmatodea should have a closer relationship with Orthoptera rather than Embioptera.  相似文献   

8.
This contribution is the first comparative SEM study of tarsal and pretarsal structures of 18 dermapteran species, including epizoic Hemimeridae, rare Apachyidae, as well as basal Pygidicranidae. Our data reject the apparent uniformity of this taxon and show that representatives of Dermaptera have independently evolved both types of attachment mechanisms: hairy and smooth. Dermaptera possess a wide spectrum of attachment devices: arolia, euplantulae, tarsal surfaces covered with specialised tenent setae and other types of cuticular outgrowths. The groundpattern of the pretarsal and tarsal attachment structures was reconstructed by mapping their characters onto a cladogram, generated without tarsal characters. In the groundpattern of recent Dermaptera, the tarsus consists of three tarsomeres. Presumably, the last common ancestor of the Dermaptera possessed an arolium, since this structure occurs in the most basal taxa: Diplatyidae, Karschiellidae (partim, adults), Pygidicranidae partim, and Apachyidae. The absence of arolium in two of the pygidicranid taxa is probably due to a secondary loss. The arolium seems to be reduced in the 'higher Dermaptera' and amongst them, only the Geracinae, which belong to the Spongiphoridae and, hence, to the well supported Eudermaptera [European Journal of Entomology, 98 (2001), 445], evolved this structure convergently. The character state distribution for euplantulae suggests their evolution being similar to that of the arolium. All species of Tagalina possess a specialised tarsus with a strongly dilated second tarsomere. The same applies to the Forficulidae. However, their relatively remote phylogenetic position to Tagalina burri is a convincing reason to assume convergent evolution of this character. The Chelisochidae, with a slender, elongated second tarsomere, possess a unique structure, which supports their monophyly. The special, heart shaped structure of the second tarsal segments in the Forficulidae suggests their monophyly. The attachment structures of Hemimerus vosseleri are highly derived and probably autapomorphic for this taxon.  相似文献   

9.
Phylogenetic relationships among the winged orders of Polyneoptera [Blattodea, Dermaptera, Embiodea (=Embioptera), Isoptera, Mantodea, Orthoptera, Phasmatodea, Plecoptera and Zoraptera] were estimated based on morphological data selected from the hindwing base structure. Cladistic analyses were carried out using hindwing base data alone and in combination with other, more general, morphological data. Both datasets resulted in similar trees and recovered the monophyly of Polyneoptera. Deepest phylogenetic relationships among the polyneopteran orders were not confidently estimated, but the monophyly of Mystroptera (= Embiodea + Zoraptera), Orthopterida (= Orthoptera + Phasmatodea) and Dictyoptera (= Blattodea + Mantodea + Isoptera) was supported consistently. In contrast, placements of Plecoptera and Dermaptera were unstable, although independent analysis of the wing base data supported their sister‐group relationship with two nonhomoplasious synapomorphies (unique conditions in the ventral basisubcostale, and in the articulation between the antemedian notal wing process and first axillary sclerite). Results from the combined wing base plus general morphology data were consistent, even if the wingless orders Grylloblattodea and Mantophasmatodea were included in the analysis. Generally, trees obtained from the present analyses were concordant with the results from other morphological and molecular analyses, but Isoptera were placed inappropriately to be the sister of Blattodea + Mantodea by the inclusion of the wing base data, probably as a result of morphological regressions of the order.  相似文献   

10.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

11.
The biological attachment device on the tarsal appendage of the earwig, Timomenus komarovi (Insecta: Dermaptera: Forficulidae) was investigated using field emission scanning electron microscopy to reveal the fine structural characteristics of its biological attachment devices to move on smooth and rough surfaces. They attach to rough substrates using their pretarsal claws; however, attachment to smooth surfaces is achieved by means of two groups of hairy tarsal pads. This biological attachment device consists of fine hairy setae with various contact sizes. Three different groups of tenent setae were distinguished depending on the cuticular substructure of the endplates. Two groups of setae commonly had flattened surfaces, and they were covered with either spoon‐shaped or spatula‐shaped endplates, respectively. While the flattened tip setae were distributed at the central region, the pointed tip setae were characteristically found along the marginal region. There were no obvious gender‐specific differences between fibrillar adhesive pads in this insect mainly because the forceps‐like pincers are used during copulation to grasp the partner.  相似文献   

12.
A strong modification of tarsal and pretarsal attachment pads during the postembryonic development is described for the first time. In the exceptionally large thorny devil stick insect Eurycantha calcarata a functional arolium is only present in the immature instars, enabling them to climb on smooth surfaces, especially leaves. Nymphs are also characterized by greyish and hairy euplantulae on tarsomeres 1–4. The gradual modifications of the arolium and the euplantula of tarsomere 5 in the nymphal development are probably mainly related to increased weight. The distinct switch in the life style between the leaf-dwelling nymphal stages and the ground-dwelling adults results in the final abrupt change of the adhesive devices, resulting in a far-reaching reduction of the arolium, the presence of a fully-developed, elongated euplantula on tarsomere 5, and white and smooth euplantulae on tarsomeres 1–4. The developmental remodelling of attachment pads also reflects a phylogenetic pattern. The attachment devices of the earlier instars are similar to those found in the basalmost lineage of extant stick insects, Timema, which is characterized by a very large pan-shaped arolium and a hairy surface of the tarsal and pretarsal attachment pads.  相似文献   

13.
Molecular evidence of the monophyly of the Halteria (Strepsiptera + Diptera) is reviewed. The majority of morphological characters, which have classically been used to establish a Strepsiptera + Coleoptera sister group, are rejected, because they are based on erroneous interpretations of strepsipteran morphology. The scorings of 31 morphological characters, which directly relate to the phylogenetic position of Strepsiptera, are provided, and their distribution and optimization on the molecular + morphological tree is discussed. Of these, 13 characters specifically support the placement of Strepsiptera within the Mecopterida; seven of which are based on the optimization of inapplicable or missing data, and six of which are based on states that can be scored for Strepsiptera. Only a single character (posteromotorism) suggests a sister group relationship with the Coleoptera. The morphological and molecular data are largely congruent, and suggest that the Strepsiptera are sister group to the Diptera.  相似文献   

14.
The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages.  相似文献   

15.
The tentorium, the anterior sulci of the head capsule (epistomal, subgenal, subantennal, circumantennal, and circumocular sulci), and the extension of the anterior tentorial pit were studied in 26 species of Blattaria (representing most principal lineages), 4 species of Mantodea (including the basal Mantoida schraderi), and 1 species each of Isoptera (the basal Mastotermes darwiniensis) and Mantophasmatodea (Austrophasma caledonense). The morphology of these head structures is compared with literature data on other insect orders, mainly Phasmatodea, Orthoptera, Dermaptera, Embioptera, and Plecoptera, and partly Odonata and Zygentoma. Characters are defined, presented in a matrix, and evaluated with regard to phylogenetic implications and homoplastic evolution. The structural relationships of the subantennal sulcus to the subgenal, circumocular, and circumantennal sulci, which are highly variable and strongly homoplastic (depending much on the size of the compound eyes) are a focal issue; several types of subantennal sulci are defined. The presence of an anterior transverse bridge in the tentorium (“perforated tentorium”) of all Dictyoptera here studied confirms the monophyly of this group. Mantophasmatodea lacks this element.  相似文献   

16.
The sperm structure of two species of Embioptera, Embia savignyi Westwood 1837 and Aposthonia japonica (Okajima 1926), was studied. Spermatozoa of both species exhibit a monolayered acrosome and a layer of material surrounding the sperm cells for most of their length. The presence of a 9+9+2 axoneme provided with accessory microtubules with 16 protofilaments, two accessory bodies and two crystallized mitochondrial derivatives are characters shared with other polyneopteran taxa. The supposed close relationship between Embioptera and Phasmatodea is not supported by characters of the sperm ultrastructure.  相似文献   

17.
Mantophasmatodea and phylogeny of the lower neopterous insects   总被引:6,自引:0,他引:6  
Polyneoptera is a name sometimes applied to an assemblage of 11 insect orders comprising the lower neopterous or “orthopteroid” insects. These orders include familiar insects such as Orthoptera (grasshoppers), Blattodea (roaches), Isoptera (termites) (Mantodea) praying mantises, Dermaptera (earwigs), Phasmatodea (stick insects), Plecoptera (stoneflies), as well as the more obscure, Embiidina (web‐spinners), Zoraptera (angel insects) and Grylloblattodea (ice‐crawlers). Many of these insect orders exhibit a high degree of morphological specialization, a condition that has led to multiple phylogenetic hypotheses and little consensus among investigators. We present a phylogenetic analysis of the polyneopteran orders representing a broad range of their phylogenetic diversity and including the recently described Mantophasmatodea. These analyses are based on complete 18S rDNA, 28S rDNA, Histone 3 DNA sequences, and a previously published morphology matrix coded at the ordinal level. Extensive analyses utilizing different alignment methodologies and parameter values across a majority of possible ranges were employed to test for sensitivity of the results to ribosomal alignment and to explore patterns across the theoretical alignment landscape. Multiple methodologies support the paraphyly of Polyneoptera, the monophyly of Dictyoptera, Orthopteroidea (sensu Kukalova‐Peck; i.e. Orthoptera + Phasmatodea + Embiidina), and a group composed of Plecoptera + Dermaptera + Zoraptera. Sister taxon relationships between Embiidina + Phasmatodea in a group called “Eukinolabia”, and Dermaptera + Zoraptera (“Haplocercata”) are also supported by multiple analyses. This analysis also supports a sister taxon relationship between the newly described Mantophasmatodea, which are endemic to arid portions of southern Africa, and Grylloblattodea, a small order of cryophilic insects confined to the north‐western Americas and north‐eastern Asia, in a group termed “Xenonomia”. This placement, coupled with the morphological disparity of the two groups, validates the ordinal status of Mantophasmatodea. © The Willi Hennig Society 2005.  相似文献   

18.
The thorax of Mengenilla was examined using traditional morphological techniques and its features were documented in detail using scanning electron microscopy and computer-based 3D reconstructions. The results were compared to conditions found in other holometabolan insects. The implications for the systematic placement of Strepsiptera are discussed. The observations are interpreted in the light of the recently confirmed sistergroup relationship between Strepsiptera and Coleoptera (Coleopterida). The synapomorphies of the thorax of Strepsiptera and Coleoptera are partly related with posteromotorism (e.g., increased size of the metathorax), partly with a decreased intrathoracic flexibility (e.g., a fused pronotum and propleurum), and partly independent from these two character complexes (e.g., not connected profurca and propleuron). Strepsiptera are more derived than Coleoptera in some thoracic features (e.g., extremely enlarged metathorax) but have also preserved some plesiomorphic conditions (e.g., tegulae in both pterothoracic segments). All potential apomorphies of Mecopterida are missing in Strepsiptera. The last common ancestor of Coleopterida had already acquired posteromotorism but the wings were still largely unmodified. Several reductions in the mesothorax likely occurred independently.  相似文献   

19.
Phylogenetic significance of the wing-base of the Holometabola (Insecta)   总被引:3,自引:0,他引:3  
The present knowledge of the wing-base morphology of the holometabolous insects is summarized, and the value of these structures for phylogenetic analysis is demonstrated. An autapomorphy of the Holometabola is a locking mechanism composed of a knob on the basalare and a corresponding cavity on the ventral wing-base. Two synapomorphic hindwing-base characters support a sister-group relationship of Coleoptera and Neuropterida. Only few data are available on the wing-base of the Hymenoptera. An autapomorphy of the taxon is a modification of the wing locking mechanism with reduced size of the basalare and its knob. It is demonstrated that wing-base characters are helpful for the analysis of the relationships between strepsipteran families. However, characters of the wing-base support neither a relationship of Strepsiptera and Coleoptera nor of Strepsiptera and Antliophora.  相似文献   

20.
Friedemann K., Wipfler B., Bradler S. and Beutel R.G. 2011 . On the head morphology of Phyllium and the phylogenetic relationships of Phasmatodea (Insecta). —Acta Zoologica (Stockholm) 00 : 1–16. External and internal head structures of Phyllium siccifolium are described in detail. The findings are compared with conditions found in other phasmatodeans and members of other neopteran lineages. The compiled 125 characters were analysed cladistically. A clade Eukinolabia (Phasmatodea + Embioptera) was confirmed. Synapomorphies of these two taxa are the shift of the origin of M. tentorioparaglossalis to the hind margin of the prementum, the presence of M. tentorioscapalis medialis, and antennal muscles that originate exclusively on the anterior tentorial arms. Within Eukinolabia, the position of Timema remains somewhat ambiguous because of missing anatomical data. However, it was confirmed as sister group of Euphasmatodea in a monophyletic Phasmatodea. Apomorphic groundplan features of Euphasmatodea are salivary ducts with separate external openings, apically rounded glossae, the presence of the galealobulus, and the reduction of the antennifer. The monophyly of Neophasmatidae was confirmed. Autapomorphies are the loss of M. frontobuccalis posterior, the anteriorly or dorsally directed maxillary palps, and the reduction of the mandibular incisivi. The analysis of characters of the head yielded three new autapomorphies of Phylliinae, the presence of a protuberance on the attachment site of the dorsal tentorial arms, dorsoventrally flattened maxillary‐ and labial palps, and possibly the narrow and U‐shaped field of trichomes on the apical part of the galea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号