首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here two strategies to produce biologically active chemokines with authentic N-terminal amino acid residues. The first involves producing the target chemokine with an N-terminal 6×His-SUMO tag in Escherichia coli as inclusion bodies. The fusion protein is solubilized and purified with Ni–NTA–agarose in denaturing reagents. This is further followed by tag removal and refolding in a redox refolding buffer. The second approach involves expressing the target chemokine with an N-terminal 6×His-Trx-SUMO tag in an engineered E. coli strain that facilitates formation of disulfide bonds in the cytoplasm. Following purification of the fusion protein via Ni–NTA and tag removal, the target chemokine is refolded without redox buffer and purified by reverse phase chromatography. Using the procedures, we have produced more than 15 biologically active chemokines, with a yield of up to 15 mg/L.  相似文献   

2.
The study presents structural models for the complex of the chemotaxis inhibitory protein of Staphylococcus aureus, CHIPS, and receptor for anaphylotoxin C5a, C5aR. The models are based on the recently found NMR structure of the complex between CHIPS fragment 31-121 and C5aR fragment 7-28, as well as on previous results of molecular modeling of C5aR. Simple and straightforward modeling procedure selected low-energy conformations of the C5aR fragment 8-41 that simultaneously fit the NMR structure of the C5aR 10-18 fragment and properly orient the NMR structure of CHIPS31-121 relative to C5aR. Extensive repacking of the side chains of CHIPS31-121 and C5aR8-41 predicted specific residue-residue interactions on the interface between CHIPS and C5aR. Many of these interactions were rationalized with experimental data obtained by site-directed mutagenesis of CHIPS and C5aR. The models correctly showed that CHIPS binds only to the first binding site of C5a to C5aR not competing with C5a fragment 59-74, which binds the second binding site of C5aR. The models also predict that two elements of CHIPS, fragments 48-58 and 97-111, may be used as structural templates for potential inhibitors of C5a.  相似文献   

3.
Full-length recombinant transposase Tc1A from Caenorhabditis elegans (343 amino acids) expressed in Escherichia coli BL21 in inclusion bodies has been purified in a high yield in a soluble form. The procedure includes denaturation of the inclusion bodies followed by refolding of the Tc1A protein by gel filtration. This last step is absolutely crucial to give a high yield of soluble and active protein since it allows the physical separation of the aggregates from intermediates that give rise to correctly refolded protein. This step is very sensitive to the concentration of protein. Good yields of refolded protein are obtained by refolding 2 to 12 mg of denatured protein. The other purification steps involve the initial use of gel filtration under denaturing conditions and a final step of ion-exchange chromatography. Biological activity of the purified protein was confirmed in an in vitro transposon excision assay and its DNA-binding capacity by UV crosslinking. This new Tc1A purification procedure gives a yield of 12–16 mg/liter E. coli culture, in a form suitable for crystallization studies.  相似文献   

4.
Bacillus thuringiensis subsp. galleriae forms spontaneous asporogenic, crystalliferous variants (SpoCry+) especially under continuous culture conditions. These variants gradually replace the wild-type strain (Spo+Cry+) entirely in the culture. SpoCry+ variants form amorphous insecticidal crystalline inclusion bodies, that are difficult to solubilize and less toxic to the caterpillars of Bombyx mori. However, the defective inclusion bodies and their trypsin-digested peptides exhibited similar antigenic profiles to that of native crystals in Western blot analysis. Apparently a block in the formation of spores does not affect the synthesis of the constitutive peptides of the crystals but may interfere with the proper assembly of the crystalline endotoxin. Correspondence to: K. Jayaraman  相似文献   

5.
Recombinant isopenicillin N synthase fromStreptomyces clavuligerus was produced in the form of inactive inclusion bodies inEscherichia coli. These inclusion bodies were solubilized by treatment with 5 M urea under reducing conditions. Optimization of refolding conditions to recover active isopenicillin N synthase indicated that a dialysis procedure carried out at a protein concentration of about 1.0 mg ml–1 gave maximal recovery of active isopenicillin N synthase. Solubilized isopenicillin N synthase of more than 95% purity was obtained by passing this material through a DEAE-Trisacryl ion exchange column. Expression studies conducted at different temperatures indicated that isopenicillin N synthase was produced predominantly in a soluble, active form when expression was conducted at 20°C, and accounted for about 20% of the total soluble protein. This high-level production facilitated the purification of soluble isopenicillin N synthase to near homogeneity in four steps. Characterization of the purified soluble and solubilized isopenicillin N synthase revealed that they are very similar.  相似文献   

6.
(1) Intestinal absorption is altered under a variety of circumstances in health and disease and to determine a possible relationship between intestinal absorptive function and intestinal brush border membrane composition, we undertook the isolation and purification of rabbit jejunal and ileal brush borders, to allow further studies of their lipid composition under varied experimental conditions. (2) A modification of an established method (Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J. and Crane, R.K. (1973) Biochim. Biophys. Acta 323, 98–112) utilized CaCl2 aggregation and sequential centrifugation followed by purification of the brush border pellet (P2) at 27 000 × g on a Percoll™ (Pharmacia) self-forming gradient. The Percoll™ was removed by ultracentrifugation for 30 min at 100 000 × g, utilizing a batch rotor in the Beckman airfuge™. (3) Pure brush border membrane vesicles were obtained and characterized by specific marker analysis and electron microscopy. Comparative marker analyses performed on P2 and final Percoll™ preparations from animals showed that the purification achieved was 8–11-fold greater when compared to the original homogenates. Verification of purity was also demonstrated by the absence of DNA and very low levels of β-gluconridase and (Na+ + K+)-ATPase in the Percoll™ preparations. (4) Comparative lipid analyses of P2 and final Percoll™ preparations showed that levels of total phospholipid and free fatty acids were several-fold higher in the Percoll™ preparations on a per mg protein basis. (5) A comparison of the activity of enzyme markers and the levels of total free fatty acids in P2 pellets obtained after CaCl2 and MgCl2 aggregation showed that CaCl2 aggregation gave the more consistently reproducible results. (6) Although standard procedures of membrane preparations not involving density gradient separation provide membranes of reasonable purity for the estimation of lipid components, we consider the final purification step of density gradient separation using Percoll™ is essential for determining small quantitative changes which might occur in the membrane lipid composition under experimental conditions where intestinal absorptive function is altered.  相似文献   

7.
This paper describes methods to produce an isotopically labeled 23 kDa viral membrane protein with purified yield of 20 mg/L of Escherichia coli shake flask culture. This yield is sufficient for NMR structural studies and the protein production methods are simple, straightforward, and rapid and likely applicable to other recombinant membrane proteins expressed in E. coli. The target FHA2 protein is the full ectodomain construct of the influenza virus hemagglutinin protein which catalyzes fusion between the viral and the cellular endosomal membranes during infection. The high yield of FHA2 was achieved by: (1) initial growth in rich medium to A600  8 followed by a switch to minimal medium and induction of protein expression; and (2) obtaining protein both from purification of the detergent-soluble lysate and from solubilization, purification, and refolding of inclusion bodies. The high cell density was achieved after optimization of pH, oxygenation, and carbon source and concentration, and the refolding protocol was optimized using circular dichroism spectroscopy. For a single residue of membrane-associated FHA2 that was obtained from purification and refolding of inclusion bodies, native conformation was verified by the 13CO chemical shifts measured using solid-state nuclear magnetic resonance spectroscopy.  相似文献   

8.
9.
Summary A refolding strategy was described for on-column refolding of recombinant human interferon-γ (rhIFN-γ) inclusion bodies by ion-exchange chromatography (IEC). The rhIFN-γ was expressed in E. colias inclusion bodies. Triton X-100 was used first to wash the rhIFN-γ inclusion bodies before chromatographic refolding. The refolding process was performed by gradually decreasing the concentration of urea in the column after the denatured rhIFN-γ protein had bound onto the ion-exchange gel SP-Sepharose Fast Flow. The refolding and purification process for the denatured rhIFN-γ was carried through simultaneously and the purity of the refolded rhIFN-γ was up to 95%. The effects of protein loading, flow rate, urea gradient length and final urea concentration on the refolding were investigated in detail. Under the optimum conditions, the specific activity of rhIFN-γ was up to 7.5 × 105 IU mg−1and active protein recovery was up to 54%.  相似文献   

10.
11.
A high cell density cultivation method was developed to produce recombinant PvRII, a malaria vaccine candidate, in E. coli for use in vaccine studies. Cells were grown in completely defined media and glucose was fed to achieve a specific growth rate of 0.12 h–1 until cells reached 55 g dry wt l–1. Culture was then induced with 1 mm IPTG and cells were further grown for 4 h to reach 85 g dry wt l–1 at 0.1 h–1. Recombinant PvRII was purified from inclusion bodies under denaturing conditions using metal affinity chromatography which yielded 10 mg PvRII g–1 dry wt. After refolding, PvRII was greater than 98% pure, homogeneous and functionally active in that it specifically bound Duffy positive human red cells.Revisions requested 21 September 2004; Revisions received 29 October 2004  相似文献   

12.
Two novel esterases (EstB1 and EstB2) were isolated from a genomic library of Bacillus sp. associated with the marine sponge Aplysina aerophoba. EstB1 shows low identity (26–44%) with the published hydrolases of the genus Bacillus, whereas EstB2 shows high identity (73–74%) with the carboxylesterases from B. cereus and B. anthracis. Both esterases were efficiently expressed in Escherichia coli under the control of T7 promoter using the vector pET-22b(+). Recombinant EstB1 was purified in a single step to electrophoretic homogeneity by IMAC. A method for the refolding of inclusion bodies formed by the recombinant EstB2 was established to obtain active enzyme. Substrate specificity of the two enzymes towards p-nitrophenyl and methyl esters and the respective kinetic parameters Km and Vmax were determined. The temperature optima of EstB1 and EstB2 were determined to be in the range of 30–50°C and 20–35°C, respectively. The pH optima were found to be in the range of 6.5–7.5 and 6.5–8.0, respectively. Both enzymes showed the highest stability in up to 50% (v/v) DMSO followed by methanol, ethanol and 2-propanol. The influence of high NaCl and KCl concentrations was tested. The inhibition effect of 10–50 mM Zn2+ and 50 mM Mg2+ and Ca2+ ions was observed for both esterases. One to five millimolar PMSF deactivated the enzymes, whereas -mercaptoethanol, DTT and EDTA had no effect on the enzymes activity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
This study describes comparison between IPTG and lactose induction on expression of caprine growth hormone (cGH), enhancing cell densities of Escherichia coli cultures and refolding the recombinant cGH, produced as inclusion bodies, to biologically active state. 2–3 times higher cell densities were obtained in shake flask cultures when induction was done with lactose showing almost same level of expression as in case of IPTG induction. With lactose induction highest cell densities were achieved in TB (OD600 16.3) and M9NG (OD600 16.1) media, producing 885 and 892 mg cGH per liter of the culture, respectively. Lactose induction done at mid-exponential stage resulted in a higher cell density and thus higher product yield. cGH over-expressed as inclusion bodies was solubilized in 50 mM Tris–Cl buffer (pH 12.5) containing 2 M urea, followed by dilution and lowering the pH in a step-wise manner to obtain the final solution in 50 mM Tris–Cl (pH 9.5). The cGH was purified by Q-Sepharose chromatography followed by gel filtration with a recovery yield of 39% on the basis of total cell proteins. The product thus obtained showed a single band by SDS–PAGE analysis. MALDI-TOF analysis showed a single peak with a mass of 21,851 dalton, which is very close to its calculated molecular weight. A bioassay based on proliferation of Nb2 rat lymphoma cells showed that the purified cGH was biologically active.  相似文献   

14.
Cystatins are a superfamily of low Ki cysteine proteinase inhibitors found in both plants and animals. Cystatin C, a secreted molecule of this family, is of interest from biochemical and evolutionary points of view, and also has biotechnological applications. Recently we cloned and sequenced the cDNA for rainbow trout (Oncorhynchus mykiss) cystatin C [Li et al., 1998. Molecular cloning, sequence analysis and expression distribution of rainbow trout (Oncorhynchus mykiss) cystatin C. Comp. Biochem. Phys. B 121, 135–143]. To explore the relationship between protein structure and function of trout cystatin C, we established a bacterial system for expression of the protein. Trout cystatin C expressed in the cytoplasm of bacterial cells did not have detectable protease inhibitory activity. Activity was regained by Ni–NTA chromatography under denaturing conditions followed by dialysis-based refolding. Titration of purified cystatin C preparations with papain indicated that 20% of the total protein had been converted to the active form after one refolding cycle. Expression levels were 3–5 mg/l. The protease-inhibitory properties of recombinant trout cystatin C were similar to those of human and chicken cystatin C derived from biological sources and recombinant cystatin C derived from rat and mouse genes. The Ki for papain was 1.2×10−15 M, exhibiting the high affinity binding unique to this family of protease inhibitors.  相似文献   

15.
One way to study low-abundance mammalian mitochondrial carriers is by ectopically expressing them as bacterial inclusion bodies. Problems encountered with this approach include protein refolding, homogeneity, and stability. In this study, we investigated protein refolding and homogeneity properties of inclusion body human uncoupling protein 2 (UCP2). N-methylanthraniloyl-tagged ATP (Mant-ATP) experiments indicated two independent inclusion body UCP2 binding sites with dissociation constants (K d) of 0.3–0.5 and 23–92 M. Dimethylanthranilate, the fluorescent tag without nucleotide, bound with a K d of greater than 100 M, suggesting that the low affinity site reflected binding of the tag. By direct titration, UCP2 bound [8-14C] ATP and [8-14C] ADP with K ds of 4–5 and 16–18 M, respectively. Mg2+ (2 mM) reduced the apparent ATP affinity to 53 M, an effect entirely explained by chelation of ATP; with Mg2+, K d using calculated free ATP was 3 M. A combination of gel filtration, Cu2+-phenanthroline cross-linking, and ultracentrifugation indicated that 75–80% of UCP2 was in a monodisperse, 197 kDa form while the remainder was aggregated. We conclude that (a) Mant-tagged nucleotides are useful fluorescent probes with isolated UCP2 when used with dimethylanthranilate controls; (b) UCP2 binds Mg2+-free nucleotides: the K d for ATP is about 3–5 M and for Mant-ATP it is about 10 times lower; and (c) in C12E9 detergent, the monodisperse protein may be in dimeric form.  相似文献   

16.
尖吻蝮蛇毒碱性磷脂酶A2的表达及其生化特征   总被引:4,自引:0,他引:4  
将尖吻蝮蛇毒碱性磷脂酶A2A.aBPLA2)基因克隆至温敏表达载体pBLMVL2,在大肠杆菌RR1中成功诱导表达.表达产物A.aBPLA2约占细菌蛋白质总量的20%,并以包涵体的形式存在.纯化包涵体后,将产物变性、复性,然后用FPLC SuperoseTM12纯化,产物经过SDS-聚丙烯酰胺凝胶电泳检测只有单一条带.对纯化后的表达A.aBPLA2进行了酶活性、抑制血小板聚集活性和溶血活性的测定.结果显示,表达A.aBPLA2的酶活性与变性后复性江浙蝮蛇酸性磷脂酶A2酶活性相近,具有类似变性后复性江浙蝮蛇碱性磷脂酶A2的溶血活性,没有抑制血小板聚集活性.最后对磷脂酶A2的结构与这些活性的关系进行了讨论.  相似文献   

17.
To renature the inactive rhBMP-2 which overexpressed in Escherichia coli, post-expression treatments including inclusion bodies solubilization and in vitro refolding were systematically investigated. An optimized refolding process was established from screening and successfully scaled up with yield greater than 70%. Then, hydrophobic interaction chromatography (HIC) was adopted as two consecutive stages to separate the active rhBMP-2 homodimer from refolding mixture. Aiding additive N,N-dimethylformamide (DMF) was found to enhance the resolution of rhBMP-2 homodimer most effectively. The rhBMP-2 homodimer was purified to homogeneity through two HIC separations at different salt contents, the purified rhBMP-2 homodimer was fully bioactive and had equivalent biological activity to rhBMP-2 produced from Chinese hamster ovary cell (CHO). Under the optimal refolding and purification conditions, 80 mg rhBMP-2 homodimer with high purity could be obtained from 1 g wet weight of inclusion bodies. Finally, this efficient refolding and purification procedure was successfully scaled up in the pilot pharmaceutical plant.  相似文献   

18.
Recombinant human growth hormone (r-hGH) was expressed in Escherichia coli as inclusion bodies. Using fed-batch fermentation process, around 670 mg/L of r-hGH was produced at a cell OD600 of 35. Cell lysis followed by detergent washing resulted in semi-purified inclusion bodies with more than 80% purity. Purified inclusion bodies were homogenous in preparation having an average size of 0.6 μm. Inclusion bodies were solubilized at pH 12 in presence of 2 M urea and refolded by pulsatile dilution. Refolded protein was purified with DEAE-anion exchange chromatography using both radial and axial flow column (50 ml bed volume each). Higher buffer flow rate (30 ml/min) in radial flow column helped in reducing the batch processing time for purification of refolded r-hGH. Radial column based purification resulted in high throughput recovery of diluted refolded r-hGH in comparison to axial column. More than 40% of inclusion body protein could be refolded into bioactive form using the above method in a single batch. Purified r-hGH was analyzed by mass spectroscopy and found to be bioactive by Nb2 cell line proliferation assay. Inclusion body enrichment, mild solubilization, pulsatile refolding and radial flow chromatography worked co-operatively to improve the overall recovery of bioactive protein from inclusion bodies.  相似文献   

19.
Dehydrodolichyl diphosphate synthase (DDPPs) catalyzes the sequential condensation of isopentenyl diphosphate with farnesyl diphosphate to synthesize long-chain dehydrodolichyl diphosphate, which serves as a precursor of glycosyl carrier in glycoprotein biosynthesis in eukaryotes. To perform kinetic and structural studies of DDPPs, we have expressed yeast DDPPs using Escherichia coli as the host cell. Thioredoxin and His tag were utilized to increase the solubility of the recombinant protein and facilitate its purification using Ni-nitrilotriacetic acid (NTA) column. The protein was overexpressed in E. coli but mostly existed in pellet in the absence of detergent. The low quantity of soluble DDPPs was purified using Ni-NTA, Mono Q anion-exchange, and size-column chromatographies. The protein in the pellet was solubilized with 7 M urea and purified using Ni-NTA under denaturing condition. The protein refolding was achieved via the stepwise dialysis to remove the denaturant in the presence of 6 mM β-mercaptoethanol. Detergent n-octyl-β- -glucopyranoside and Triton X-100 increased the solubility of the DDPPs so that refolding can be performed at higher protein concentration. Alternatively, on-column refolding was carried out in a single step to obtain the active protein in large quantities. β-Mercaptoethanol and Triton were both required in this quick refolding process. The kinetic studies indicated that the soluble and refolded DDPPs have comparable activities (kcat = 2 × 10−4 s−1). Unlike its bacterial homologue, undecaprenyl diphosphate synthase, yeast DDPPs activity was not enhanced by Triton.  相似文献   

20.
Recombinant bovine angiogenin (rbAng) was expressed in E. coli at up to 30% of total cell proteins but was produced as inclusion bodies. By investigating the effect of various factors on the refolding yield, we obtained about 60% refolding. After chromatographic purification, about 60 mg purified angiogenin was obtained from 1 l culture. The purified recombinant bovine angiogenin was identical to native bovine angiogenin (nbAng) obtained from cow's milk. Our approach is highly efficient and can be generally used for the production of various types of angiogenin for functional and structural studies as well as therapeutic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号