首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation—and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon ‘no net loss’ conservation literature—considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity.  相似文献   

2.
The loss of a species from an ecological community can trigger a cascade of additional extinctions; the complex interactions that comprise ecological communities make the dynamics and impacts of such a cascade challenging to predict. Previous studies have typically considered global extinctions, where a species cannot re-enter a community once it is lost. However, in some cases a species only becomes locally extinct, and may be able to reinvade from surrounding communities. Here, we use a dynamic, Boolean network model of plant–pollinator community assembly to analyze the differences between global and local extinction events in mutualistic communities. As expected, we find that compared to global extinctions, communities respond to local extinctions with lower biodiversity loss, and less variation in topological network properties. We demonstrate that in the face of global extinctions, larger communities suffer greater biodiversity loss than smaller communities when similar proportions of species are lost. Conversely, smaller communities suffer greater loss in the face of local extinctions. We show that targeting species with the most interacting partners causes more biodiversity loss than random extinctions in the case of global, but not local, extinctions. These results extend our understanding of how mutualistic communities respond to species loss, with implications for community management and conservation efforts.  相似文献   

3.
The role of infectious diseases in biological conservation   总被引:1,自引:0,他引:1  
Recent increases in the magnitude and rate of environmental change, including habitat loss, climate change and overexploitation, have been directly linked to the global loss of biodiversity. Wildlife extinction rates are estimated to be 100–1000 times greater than the historical norm, and up to 50% of higher taxonomic groups are critically endangered. While many types of environmental changes threaten the survival of species all over the planet, infectious disease has rarely been cited as the primary cause of global species extinctions. There is substantial evidence, however, that diseases can greatly impact local species populations by causing temporary or permanent declines in abundance. More importantly, pathogens can interact with other driving factors, such as habitat loss, climate change, overexploitation, invasive species and environmental pollution to contribute to local and global extinctions. Regrettably, our current lack of knowledge about the diversity and abundance of pathogens in natural systems has made it difficult to establish the relative importance of disease as a significant driver of species extinction, and the context when this is most likely to occur. Here, we review the role of infectious diseases in biological conservation. We summarize existing knowledge of disease-induced extinction at global and local scales and review the ecological and evolutionary forces that may facilitate disease-mediated extinction risk. We suggest that while disease alone may currently threaten few species, pathogens may be a significant threat to already-endangered species, especially when disease interacts with other drivers. We identify control strategies that may help reduce the negative effects of disease on wildlife and discuss the most critical challenges and future directions for the study of infectious diseases in the conservation sciences.  相似文献   

4.
Species richness is decreasing at a global scale. At subglobal scales, that is, within any defined area less extensive than the globe, species richness will increase when the number of nonnative species becoming naturalized is greater than the number of native species becoming extinct. Determining whether this has occurred is usually difficult because detailed records of species extinctions and naturalizations are rare; these records often exist, however, for oceanic islands. Here we show that species richness on oceanic islands has remained relatively unchanged for land birds, with the number of naturalizations being roughly equal to the number of extinctions, and has increased dramatically for vascular plants, with the number of naturalizations greatly exceeding the number of extinctions. In fact, for plants, the net number of species on islands has approximately doubled. We show further that these patterns are robust to differences in the history of human occupation of these islands and to the possibility of undocumented species extinctions. These results suggest that species richness may be increasing at subglobal scales for many groups and that future research should address what consequences this may have on ecological processes.  相似文献   

5.

Aim

Biodiversity loss is a key component of biodiversity change and can impact ecosystem services. However, estimation of the loss has focused mostly on per‐species extinction rates measured over a limited number of spatial scales, with little theory linking small‐scale extirpations to global extinctions. Here, we provide such a link by introducing the relationship between area and the number of extinctions (number of extinctions–area relationship; NxAR) and between area and the proportion of extinct species (proportion of extinctions–area relationship; PxAR). Unlike static patterns, such as the species–area relationship, NxAR and PxAR represent spatial scaling of a dynamic process. We show theoretical and empirical forms of these relationships and we discuss their role in perception and estimation of the current extinction crisis.

Location

U.S.A., Europe, Czech Republic and Barro Colorado Island (Panama).

Time period

1500–2009.

Major taxa studied

Vascular plants, birds, butterflies and trees.

Methods

We derived the expected forms of NxAR and PxAR from several theoretical frameworks, including the theory of island biogeography, neutral models and species–area relationships. We constructed NxAR and PxAR from five empirical datasets collected over a range of spatial and temporal scales.

Results

Although increasing PxAR is theoretically possible, empirical data generally support a decreasing PxAR; the proportion of extinct species decreases with area. In contrast, both theory and data revealed complex relationships between numbers of extinctions and area (NxAR), including nonlinear, unimodal and U‐shaped relationships, depending on region, taxon and temporal scale.

Main conclusions

The wealth of forms of NxAR and PxAR explains why biodiversity change appears scale dependent. Furthermore, the complex scale dependence of NxAR and PxAR means that global extinctions indicate little about local extirpations, and vice versa. Hence, effort should be made to understand and report extinction rates as a scale‐dependent problem. In this effort, estimation of scaling relationships such as NxAR and PxAR should be central.  相似文献   

6.
《Trends in parasitology》2023,39(8):618-621
Parasites stabilise food webs and facilitate species coexistence but can also lead to population- or species-level extinctions. So, in biodiversity conservation, are parasites friends or foes? This question is misleading: it implies that parasites are not part of biodiversity. Greater integration of parasites into global biodiversity and ecosystem conservation efforts is required.  相似文献   

7.
Large carnivores are important ecosystem components but are extinction prone due to small populations, slow growth rates and large area requirements. Consequently, there has been a surge of carnivore conservation efforts. Such efforts typically target local populations, with limited attention to the effects on the ecosystem function of predator guilds. Also, there is no framework for prioritizing these efforts globally. We compared taxonomic and functional diversity of continental carnivore guilds, compared them with the corresponding guilds during the Late Pleistocene and synthesized our results into suggestions for global prioritizations for carnivore conservation. Recent extinctions have caused taxonomically and functionally depleted carnivore guilds in Europe and North and South America, contrasting with guilds in Africa and Asia, which have retained a larger proportion of their carnivores. However, Asia is at higher risk of suffering further extinctions than other continents. We suggest three priorities of contrasting urgency for global carnivore conservation: (i) to promote recovery of the threatened Asian species, (ii) to prevent species in the depleted guilds in Europe and North and South America from becoming threatened, and (iii) to reconstruct functionally intact sympatric guilds of large carnivores at ecologically effective population sizes.  相似文献   

8.
1.  The populations of many UK farmland birds declined between 1970 and 1990, frequently accompanied by contractions in breeding ranges. Ornithological atlas data, land use data and environmental data at the scale of 10-km squares were used to investigate the relationship between local extinctions and habitat suitability for six species, and to predict where future losses are most likely.
2.  For each species we tested the hypothesis that local extinctions were concentrated in environments that were inherently less suitable. We also tested the hypothesis that spatial patterns of loss were not independent between species due to their concurrence in the same habitats.
3.  Multivariate analyses (PCA) showed that areas where each species became extinct between 1970 and 1990 were more similar in land use type, climate and topography to areas where a species was never present than those where it was retained; local extinction was more likely in less suitable environments. Multiple logistic regression showed that for five of the six species the environmental gradient best predicting presence or absence in 1970 was also that best predicting loss between 1970 and 1990. For the six species studied, local extinctions were least likely in lowland arable areas.
4.  For any pair of species, local extinctions were more frequent outside the area of overlap of the two species' ranges than inside. Within the area of overlap, species tended to be lost from the same squares. For each species, likelihood of local extinction declined with increasing number of the other five species present.
5.  We used model parameters to map the probability of future local extinctions of the six species considered, allowing the identification of key areas for conservation management at a spatial scale appropriate to agri-economic incentives.  相似文献   

9.
1. The loss of a species from an ecological community can trigger a cascade of secondary extinctions. Here we investigate how the complexity (connectance) of model communities affects their response to species loss. Using dynamic analysis based on a global criterion of persistence (permanence) and topological analysis we investigate the extent of secondary extinctions following the loss of different kinds of species. 2. We show that complex communities are, on average, more resistant to species loss than simple communities: the number of secondary extinctions decreases with increasing connectance. However, complex communities are more vulnerable to loss of top predators than simple communities. 3. The loss of highly connected species (species with many links to other species) and species at low trophic levels triggers, on average, the largest number of secondary extinctions. The effect of the connectivity of a species is strongest in webs with low connectance. 4. Most secondary extinctions are due to direct bottom-up effects: consumers go extinct when their resources are lost. Secondary extinctions due to trophic cascades and disruption of predator-mediated coexistence also occur. Secondary extinctions due to disruption of predator-mediated coexistence are more common in complex communities than in simple communities, while bottom-up and top-down extinction cascades are more common in simple communities. 5. Topological analysis of the response of communities to species loss always predicts a lower number of secondary extinctions than dynamic analysis, especially in food webs with high connectance.  相似文献   

10.
The effects of migration in a network of patch populations, or metapopulation, are extremely important for predicting the possibility of extinctions both at a local and a global scale. Migration between patches synchronizes local populations and bestows upon them identical dynamics (coherent or synchronous oscillations), a feature that is understood to enhance the risk of global extinctions. This is one of the central theoretical arguments in the literature associated with conservation ecology. Here, rather than restricting ourselves to the study of coherent oscillations, we examine other types of synchronization phenomena that we consider to be equally important. Intermittent and out-of-phase synchronization are but two examples that force us to reinterpret some classical results of the metapopulation theory. In addition, we discuss how asynchronous processes (for example, random timing of dispersal) can paradoxically generate metapopulation synchronization, another non-intuitive result that cannot easily be explained by the standard theory.  相似文献   

11.
Dictated by limited resource availability for land acquisition, a central question in conservation biology is the ability of areas of different size to maintain species diversity. The selected reserves should not only be species rich at the moment, but should also maintain species diversity in the long run. We used two sets of data on vascular plant species in boreal lakes collected in 1933/34 and 1996 to test the relationships between lake area and the extinction, immigration and turnover rates of the species. Moreover, we investigated, whether the number of species in 1933/34 or water connection between lakes was related to extinction, immigration and turnover rates of species. We found that lake area or shoreline length was not correlated with immigration or turnover rate. But extinction rate was slightly negatively correlated with shoreline length. The original number of species was positively related to the number of species extinctions and to the absolute turnover rate in the lakes, which indicates that species richness does not create stability in these communities. Species number was not correlated with immigration rate. Upstream water connections in the lakes did not affect immigration, extinction or turnover rates. We conclude that length of the shoreline is a better measure of suitable area for water plants than the lake area, and that because the correlation between shoreline length and extinction rate was slight, also small lakes can be valuable for conservation.  相似文献   

12.
Designing protected area configurations to maximise biodiversity is a critical conservation goal. The configuration of protected areas can significantly impact the richness and identity of the species found there; one large patch supports larger populations but can facilitate competitive exclusion. Conversely, many small habitats spreads risk but may exclude predators that typically require large home ranges. Identifying how best to design protected areas is further complicated by monitoring programs failing to detect species. Here we test the consequences of different protected area configurations using multi‐trophic level experimental microcosms. We demonstrate that for a given total size, many small patches generate higher species richness, are more likely to contain predators, and have fewer extinctions compared to single large patches. However, the relationship between the size, number of patches, and species richness was greatly affected by insufficient monitoring, and could lead to incorrect conservation decisions, especially for higher trophic levels.  相似文献   

13.
Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way.  相似文献   

14.
There is a widespread belief that we are experiencing a mass extinction event similar in severity to previous mass extinction events in the last 600 million years where up to 95% of species disappeared. This paper reviews evidence for current extinctions and different methods of assessing extinction rates including species–area relationships and loss of tropical forests, changing threat status of species, co-extinction rates and modelling the impact of climate change. For 30 years some have suggested that extinctions through tropical forest loss are occurring at a rate of up to 100 species a day and yet less than 1,200 extinctions have been recorded in the last 400 years. Reasons for low number of identified global extinctions are suggested here and include success in protecting many endangered species, poor monitoring of most of the rest of species and their level of threat, extinction debt where forests have been lost but species still survive, that regrowth forests may be important in retaining ‘old growth’ species, fewer co-extinctions of species than expected, and large differences in the vulnerability of different taxa to extinction threats. More recently, others have suggested similar rates of extinction to earlier estimates but with the key cause of extinction being climate change, and in particular rising temperatures, rather than deforestation alone. Here I suggest that climate change, rather than deforestation is likely to bring about such high levels of extinction since the impacts of climate change are local to global and that climate change is acting synergistically with a range of other threats to biodiversity including deforestation.  相似文献   

15.
The conservation of plants has not generated the sense of urgency—or the funding—that drives the conservation of animals, although plants are far more important for us. There are an estimated 500,000 species of land plants (angiosperms, gymnosperms, ferns, lycophytes, and bryophytes), with diversity strongly concentrated in the humid tropics. Many species are still unknown to science. Perhaps a third of all land plants are at risk of extinction, including many that are undescribed, or are described but otherwise data deficient. There have been few known global extinctions so far, but many additional species have not been recorded recently and may be extinct. Although only a minority of plant species have a specific human use, many more play important roles in natural ecosystems and the services they provide, and rare species are more likely to have unusual traits that could be useful in the future. The major threats to plant diversity include habitat loss, fragmentation, and degradation, overexploitation, invasive species, pollution, and anthropogenic climate change. Conservation of plant diversity is a massive task if viewed globally, but the combination of a well-designed and well-managed protected area system and ex situ gap-filling and back-up should work anywhere. The most urgent needs are for the completion of the global botanical inventory and an assessment of the conservation status of the 94% of plant species not yet evaluated, so that both in and ex situ conservation can be targeted efficiently. Globally, the biggest conservation gap is in the hyperdiverse lowland tropics and this is where attention needs to be focused.  相似文献   

16.
Global livestock genetic diversity includes all of the species, breeds and strains of domestic animals, and their variations. Although a recent census indicated that there were 40 species and over 8000 breeds of domestic animals; for the purpose of conservation biology the diversity between and within breeds rather than species is regarded to be of crucial importance. This domestic animal genetic diversity has developed through three main evolutionary events, from speciation (about 3 million years ago) through domestication (about 12000 years ago) to specialised breeding (starting about 200 years ago). These events and their impacts on global animal genetic resources have been well documented in the literature. The key importance of global domestic animal resources in terms of economic, scientific and cultural heritage has also been addressed. In spite of their importance, there is a growing number of reports on the alarming erosion of domestic animal genetic resources. This erosion of is happening in spite of several global conservation initiatives designed to mitigate it. Herein we discuss these conservation interventions and highlight their strengths and weaknesses. However, pivotal to the success of these conservation initiatives is the reliability of the genetic assignment of individual members to a target breed. Finally, we discuss the prospect of using improved breed identification methodologies to develop a reliable breed‐specific molecular identification tool that is easily applicable to populations of livestock breeds in various ecosystems. These identification tools, when developed, will not only facilitate the regular monitoring of threatened or endangered breed populations, but also enhance the development of more efficient and sustainable livestock production systems.  相似文献   

17.
In the face of accelerating species extinctions, map-based prioritization systems are increasingly useful to decide where to pursue conservation action most effectively. However, a number of seemingly inconsistent schemes have emerged, mostly focussing on endemism. Here we use global vertebrate distributions in terrestrial ecoregions to evaluate how continuous and categorical ranking schemes target and accumulate endangered taxa within the IUCN Red List, Alliance for Zero Extinction (AZE), and EDGE of Existence programme. We employed total, endemic and threatened species richness and an estimator for richness-adjusted endemism as metrics in continuous prioritization, and WWF''s Global200 and Conservation International''s (CI) Hotspots in categorical prioritization. Our results demonstrate that all metrics target endangerment more efficiently than by chance, but each selects unique sets of top-ranking ecoregions, which overlap only partially, and include different sets of threatened species. Using the top 100 ecoregions as defined by continuous prioritization metrics, we develop an inclusive map for global vertebrate conservation that incorporates important areas for endemism, richness, and threat. Finally, we assess human footprint and protection levels within these areas to reveal that endemism sites are more impacted but have more protection, in contrast to high richness and threat ones. Given such contrasts, major efforts to protect global biodiversity must involve complementary conservation approaches in areas of unique species as well as those with highest diversity and threat.  相似文献   

18.
  1. Habitat loss leading to smaller patch sizes and decreasing connectivity is a major threat to global biodiversity. While some species vanish immediately after a change in habitat conditions, others show delayed extinction, that is, an extinction debt. In case of an extinction debt, the current species richness is higher than expected under present habitat conditions.
  2. We investigated wetlands of the canton of Zürich in the lowlands of Eastern Switzerland where a wetland loss of 90% over the last 150 years occurred. We related current species richness to current and past patch area and connectivity (in 1850, 1900, 1950, and 2000). We compared current with predicted species richness in wetlands with a substantial loss in patch area based on the species‐area relationship of wetlands without substantial loss in patch area and studied relationships between the richness of different species groups and current and historical area and connectivity of wetland patches.
  3. We found evidence of a possible extinction debt for long‐lived wetland specialist vascular plants: in wetlands, which substantially lost patch area, current species richness of long‐lived specialist vascular plants was higher than would have been expected based on current patch area. Additionally and besides current wetland area, historical area also explained current species richness of these species in a substantial and significant way. No evidence for an extinction debt in bryophytes was found.
  4. The possible unpaid extinction debt in the wetlands of the canton of Zürich is an appeal to nature conservation, which has the possibility to prevent likely future extinctions of species through specific conservation measures. In particular, a further reduction in wetlands must be prevented and restoration measures must be taken to increase the number of wetlands.
  相似文献   

19.
The efficiency of protected areas (PAs) has often been questioned due to global decline of biodiversity. Invertebrates, especially insects, have been historically underrepresented in conservation studies. Our study focuses on hoverflies, an important group of insect pollinators and proven to be good bioindicators. Research was focused in Serbia, one of Europe's hotspots of hoverfly diversity, with a long tradition of hoverfly research, which provided sufficient information for achieving our aims: identifying areas of high hoverfly diversity, evaluating the efficiency of PAs and prime hoverfly areas (PHAs) in the conservation of hoverflies, determining how well they cover the distribution of hoverfly species, especially those of conservation concern, and testing the importance of the size of the area for conservation of hoverfly diversity. We applied weighting of the species to help stress the importance of species of conservation concern. The results indicated that PHAs cover the areas with high hoverfly diversity better than PA networks, especially when it comes to species of conservation concern. Generalized linear model results showed that the area size was a significant predictor of number of species in both PA and PHA. This indicates that area size is key when designating new areas important for conservation, but there are also other factors that need to be taken into account, such as habitat quality or suitability. Studies like this are useful in aiding designation of new areas important for conservation of certain species and in identifying sampling gaps, which could potentially aim future research in that direction.  相似文献   

20.
Aim Conservation of species is an ongoing concern. Location Worldwide. Methods We examined historical extinction rates for birds and mammals and contrasted island and continental extinctions. Australia was included as an island because of its isolation. Results Only six continental birds and three continental mammals were recorded in standard databases as going extinct since 1500 compared to 123 bird species and 58 mammal species on islands. Of the extinctions, 95% were on islands. On a per unit area basis, the extinction rate on islands was 177 times higher for mammals and 187 times higher for birds than on continents. The continental mammal extinction rate was between 0.89 and 7.4 times the background rate, whereas the island mammal extinction rate was between 82 and 702 times background. The continental bird extinction rate was between 0.69 and 5.9 times the background rate, whereas for islands it was between 98 and 844 times the background rate. Undocumented prehistoric extinctions, particularly on islands, amplify these trends. Island extinction rates are much higher than continental rates largely because of introductions of alien predators (including man) and diseases. Main conclusions Our analysis suggests that conservation strategies for birds and mammals on continents should not be based on island extinction rates and that on islands the key factor to enhance conservation is to alleviate pressures from uncontrolled hunting and predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号