首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Sah  E M McLachlan 《Neuron》1991,7(2):257-264
We examined the possibility that Ca2+ released from intracellular stores could activate K+ currents underlying the afterhyperpolarization (AHP) in neurons. In neurons of the dorsal motor nucleus of the vagus, the current underlying the AHP had two components: a rapidly decaying component that was maximal following the action potential (GkCa,1) and a slower component that had a distinct rising phase (GkCa,2). Both components required influx of extracellular Ca2+ for their activation, and neither was blocked by extracellular TEA (10 mM). GkCa,1 was selectively blocked by apamin, whereas GkCa,2 was selectively reduced by noradrenaline. The time course of GkCa,2 was markedly temperature sensitive. GkCa,2 was selectively blocked by application of ryanodine or sodium dantrolene, or by loading cells with ruthenium red. These results suggest that influx of Ca2+ directly gates one class of K+ channels and leads to release of Ca2+ from intracellular stores, which activates a different class of K+ channel.  相似文献   

2.
We used whole-cell, voltage-clamp methodology to study the activation and inhibition of cationic currents in neutrophil. Cationic channels involved were impermeable to N-methyl-D-glucamine and to choline, but permeable to Na+, K+, Cs+, tris(hydroxymethyl)amino-ethane, and tetraethylammonium. N-formyl-L-methionyl-L-leucyl-L-phenylalanine, the Ca(2+)-ionophore A23187, and phorbol myristate acetate activated the cationic current. Activated currents showed voltage dependence and outward rectification. The Ca(2+)-chelator 1,2 bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate markedly inhibited A23187-induced currents, but only partially decreased phorbol ester- or chemoattractant-induced currents. Dibutyryl cAMP diminished only the chemoattractant-induced currents. The adenosine analogs 5'N-ethylcarboxamidoadenosine and N6-cyclohexyladenosine blocked the currents induced by all agents. Thus, we conclude that activation and inhibition of cationic channels in human neutrophils involve both Ca(2+)-dependent and Ca(2+)-independent mechanisms.  相似文献   

3.
Calcineurin is a calcium-dependent protein phosphatase that functions in T cell activation. We present evidence that calcineurin functions more generally in calcium-triggered apoptosis in mammalian cells deprived of growth factors. Specifically, expression of epitope-tagged calcineurin A induces rapid cell death upon calcium signaling in the absence of growth factors. We show that this apoptosis does not require new protein synthesis and therefore calcineurin must operate through existing substrates. Co-expression of the Bcl-2 protooncogene efficiently blocks calcineurin-induced cell death. Significantly, we demonstrate that a calcium-independent calcineurin mutant induces apoptosis in the absence of calcium, and that this apoptotic response is a direct consequence of calcineurin's phosphatase activity. These data suggest that calcineurin plays an important role in mediating the upstream events in calcium-activated cell death.  相似文献   

4.
5.
Ca(2+)-activated K+ channels in human leukemic T cells   总被引:9,自引:0,他引:9  
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling.  相似文献   

6.
7.
The c-jun gene is a major regulator of proliferative and stress responses of both normal and transformed cells. In general, during immortalization/transformation c-jun cooperates with oncogenic signals rather than acting as an oncogene itself. Here we report a novel example of this cooperation, the requirement for c-jun to sustain expression of the matrix metalloproteinase-2 (MMP-2) gene in cells immortalized by SV40 large T-antigen (TAg). MMP-2 encodes a type IV collagenase that is secreted by cells within normal and tumor microenvironments. We used wild-type and c-jun null primary and TAg-immortalized mouse embryonic fibroblasts (mEFs) to investigate the importance of c-jun for the regulation of this activity, and observed that c-jun is essential for MMP-2 expression in immortalized but not primary mEFs. This finding directly demonstrates a cooperative interaction of c-jun with an oncogene, and suggests that TAg dependent immortalization/transformation may require other c-Jun/AP-1-dependent genes.  相似文献   

8.
In rat uterine stromal cells (U(III) cells), an oxidative stress induced by H(2)O(2) caused a dose-dependent release of arachidonic acid (AA) that was independent of intracellular Ca(2+) concentration and was not inhibited by Ca(2+)-dependent phospholipase A(2) (cPLA(2)) inhibitors, nor by protein kinase C (PKC) inhibitors or by PKC down-regulation. H(2)O(2) treatment did not impair AA esterification but significantly increased Ca(2+)-independent PLA(2) (iPLA(2)) activity. Since iPLA(2) specific inhibitor bromoenollactone almost completely suppressed the release of AA induced by H(2)O(2), we conclude that iPLA(2) activity represents the major mechanism by which H(2)O(2) increases the availability of non-esterified AA in U(III) cells. Moreover, PKC inhibitors sphingosine and calphostin C markedly potentiated the release of AA trigger by H(2)O(2), suggesting a regulatory mechanism of iPLA(2) by PKC that remains to be clarified.  相似文献   

9.
Ca2+-activated Cl- channels play important diverse roles from fast block to polyspermy to olfactory transduction, but their molecular identity has not been firmly established. By searching sequence databases with the M2 pore domain of ligand-gated anion channels, we identified potential Ca2+-activated Cl- channels, which included members of the bestrophin family. We cloned two bestrophins from Xenopus oocytes, which express high levels of Ca2+-activated Cl- channels. The Xenopus bestrophins were expressed in a variety of tissues. We predict that bestrophin has six transmembrane domains with the conserved RFP domain playing an integral part in ionic selectivity. When Xenopus bestrophins were heterologously expressed in human embryonic kidney-293 cells, large Ca2+-activated Cl- currents were observed. The currents are voltage- and time-independent, do not rectify, have a Kd for Ca2+ of approximately 210 nm, and exhibit a permeability ratio of I- > Br- > Cl- > aspartate. The W93C and G299E mutations produce non-functional channels that exert a dominant negative effect on wild type channels. We conclude that bestrophins are the first molecularly identified Cl- channels that are dependent on intracellular Ca2+ in a physiological range.  相似文献   

10.
Over the past few years, it has become clear that an important mechanism by which large-conductance Ca2+-activated K+ channel (BKCa) activity is regulated is the tissue-specific expression of auxiliary β subunits. The first of these to be identified, β1, is expressed predominately in smooth muscle and causes dramatic effects, increasing the apparent affinity of the channel for Ca2+ 10-fold at 0 mV, and shifting the range of voltages over which the channel activates −80 mV at 9.1 μM Ca2+. With this study, we address the question: which aspects of BKCa gating are altered by β1 to bring about these effects: Ca2+ binding, voltage sensing, or the intrinsic energetics of channel opening? The approach we have taken is to express the β1 subunit together with the BKCa α subunit in Xenopus oocytes, and then to compare β1''s steady state effects over a wide range of Ca2+ concentrations and membrane voltages to those predicted by allosteric models whose parameters have been altered to mimic changes in the aspects of gating listed above. The results of our analysis suggest that much of β1''s steady state effects can be accounted for by a reduction in the intrinsic energy the channel must overcome to open and a decrease in its voltage sensitivity, with little change in the affinity of the channel for Ca2+ when it is either open or closed. Interestingly, however, the small changes in Ca2+ binding affinity suggested by our analysis (Kc 7.4 μM → 9.6 μM; Ko = 0.80 μM → 0.65 μM) do appear to be functionally important. We also show that β1 affects the mSlo conductance–voltage relation in the essential absence of Ca2+, shifting it +20 mV and reducing its apparent gating charge 38%, and we develop methods for distinguishing between alterations in Ca2+ binding and other aspects of BKCa channel gating that may be of general use.  相似文献   

11.
12.
Membrane potential has a major influence on stimulus-secretion coupling in various excitable cells. The role of membrane potential in the regulation of parathyroid hormone secretion is not known. High K+-induced depolarization increases secretion from parathyroid cells. The paradox is that increased extracellular Ca2+, which inhibits secretion, has also been postulated to have a depolarizing effect. In this study, human parathyroid cells from parathyroid adenomas were used in patch clamp studies of K+ channels and membrane potential. Detailed characterization revealed two K+ channels that were strictly dependent of intracellular Ca2+ concentration. At high extracellular Ca2+, a large K+ current was seen, and the cells were hyperpolarized (-50.4 +/- 13.4 mV), whereas lowering of extracellular Ca2+ resulted in a dramatic decrease in K+ current and depolarization of the cells (-0.1 +/- 8.8 mV, p < 0.001). Changes in extracellular Ca2+ did not alter K+ currents when intracellular Ca2+ was clamped, indicating that K+ channels are activated by intracellular Ca2+. The results were concordant in cell-attached, perforated patch, whole-cell and excised membrane patch configurations. These results suggest that [Ca2+]o regulates membrane potential of human parathyroid cells via Ca2+-activated K+ channels and that the membrane potential may be of greater importance for the stimulus-secretion coupling than recognized previously.  相似文献   

13.
We report here a combination of site-directed mutations that eliminate the high-affinity Ca(2+) response of the large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), leaving only a low-affinity response blocked by high concentrations of Mg(2+). Mutations at two sites are required, the "Ca(2+) bowl," which has been implicated previously in Ca(2+) binding, and M513, at the end of the channel's seventh hydrophobic segment. Energetic analyses of mutations at these positions, alone and in combination, argue that the BK(Ca) channel contains three types of Ca(2+) binding sites, one of low affinity that is Mg(2+) sensitive (as has been suggested previously) and two of higher affinity that have similar binding characteristics and contribute approximately equally to the power of Ca(2+) to influence channel opening. Estimates of the binding characteristics of the BK(Ca) channel's high-affinity Ca(2+)-binding sites are provided.  相似文献   

14.
15.
Modulation of the cloned human intermediate-conductance Ca(2+)-activated K(+) channel (hIK) by the compound 1-ethyl-2-benzimidazolinone (EBIO) was studied by patch-clamp technique using human embryonic kidney cells (HEK 293) stably expressing the hIK channels. In whole-cell studies, intracellular concentrations of free Ca(2+) were systematically varied, by buffering the pipette solutions. In voltage-clamp, the hIK specific currents increased gradually from 0 to approximately 300 pA/pF without reaching saturation even at the highest Ca(2+) concentration tested (300 nM). In the presence of EBIO (100 microM), the Ca(2+)-activation curve was shifted leftwards, and maximal currents were attained at 100 nM Ca(2+). In current-clamp, steeply Ca(2+)-dependent membrane potentials were recorded and the cells gradually hyperpolarised from -20 to -85 mV when Ca(2+) was augmented from 0 to 300 nM. EBIO strongly hyperpolarised cells buffered at intermediate Ca(2+) concentrations. In contrast, no effects were detected either below 10 nM (no basic channel activation) or at 300 nM Ca(2+) (V(m) close to E(K)). Without Ca(2+), EBIO-induced hyperpolarisations were not obtainable, indicating an obligatory Ca(2+)-dependent mechanism of action. When applied to inside-out patches, EBIO exerted a Ca(2+)-dependent increase in the single-channel open-state probability, showing that the compound modulates hIK channels by a direct action on the alpha-subunit or on a closely associated protein. In conclusion, EBIO activates hIK channels in whole-cell and inside-out patches by a direct mechanism, which requires the presence of internal Ca(2+).  相似文献   

16.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

17.
Ca(2+)-activated Cl(-) channels play important roles in a variety of physiological processes, including epithelial secretion, maintenance of smooth muscle tone, and repolarization of the cardiac action potential. It remains unclear, however, exactly how these channels are controlled by Ca(2+) and voltage. Excised inside-out patches containing many Ca(2+)-activated Cl(-) channels from Xenopus oocytes were used to study channel regulation. The currents were mediated by a single type of Cl(-) channel that exhibited an anionic selectivity of I(-) > Br(-) > Cl(-) (3.6:1.9:1.0), irrespective of the direction of the current flow or [Ca(2+)]. However, depending on the amplitude of the Ca(2+) signal, this channel exhibited qualitatively different behaviors. At [Ca(2+)] < 1 microM, the currents activated slowly upon depolarization and deactivated upon hyperpolarization and the steady state current-voltage relationship was strongly outwardly rectifying. At higher [Ca(2+)], the currents did not rectify and were time independent. This difference in behavior at different [Ca(2+)] was explained by an apparent voltage-dependent Ca(2+) sensitivity of the channel. At +120 mV, the EC(50) for channel activation by Ca(2+) was approximately fourfold less than at -120 mV (0.9 vs. 4 microM). Thus, at [Ca(2+)] < 1 microM, inward current was smaller than outward current and the currents were time dependent as a consequence of voltage-dependent changes in Ca(2+) binding. The voltage-dependent Ca(2+) sensitivity was explained by a kinetic gating scheme in which channel activation was Ca(2+) dependent and channel closing was voltage sensitive. This scheme was supported by the observation that deactivation time constants of currents produced by rapid Ca(2+) concentration jumps were voltage sensitive, but that the activation time constants were Ca(2+) sensitive. The deactivation time constants increased linearly with the log of membrane potential. The qualitatively different behaviors of this channel in response to different Ca(2+) concentrations adds a new dimension to Ca(2+) signaling: the same channel can mediate either excitatory or inhibitory responses, depending on the amplitude of the cellular Ca(2+) signal.  相似文献   

18.
Ca(2+)-activated Cl channels (Cl(Ca)Cs) are an important class of anion channels that are opened by increases in cytosolic [Ca(2+)]. Here, we examine the mechanisms of anion permeation through Cl(Ca)Cs from Xenopus oocytes in excised inside-out and outside-out patches. Cl(Ca)Cs exhibited moderate selectivity for Cl over Na: P(Na)/P(Cl) = 0.1. The apparent affinity of Cl(Ca)Cs for Cl was low: K(d) = 73 mM. The channel had an estimated pore diameter >0.6 nm. The relative permeabilities measured under bi-ionic conditions by changes in E(rev) were as follows: C(CN)(3) > SCN > N(CN)(2) > ClO(4) > I > N(3) > Br > Cl > formate > HCO(3) > acetate = F > gluconate. The conductance sequence was as follows: N(3) > Br > Cl > N(CN)(2) > I > SCN > COOH > ClO(4) > acetate > HCO(3) = C(CN)(3) > gluconate. Permeant anions block in a voltage-dependent manner with the following affinities: C(CN)(3) > SCN = ClO(4) > N(CN)(2) > I > N(3) > Br > HCO(3) > Cl > gluconate > formate > acetate. Although these data suggest that anionic selectivity is determined by ionic hydration energy, other factors contribute, because the energy barrier for permeation is exponentially related to anion hydration energy. Cl(Ca)Cs exhibit weak anomalous mole fraction behavior, implying that the channel may be a multi-ion pore, but that ions interact weakly in the pore. The affinity of the channel for Ca(2+) depended on the permeant anion at low [Ca(2+)] (100-500 nM). Apparently, occupancy of the pore by a permeant anion increased the affinity of the channel for Ca(2+). The current was strongly dependent on pH. Increasing pH on the cytoplasmic side decreased the inward current, whereas increasing pH on the external side decreased the outward current. In both cases, the apparent pKa was voltage-dependent with apparent pKa at 0 mV = approximately 9.2. The channel may be blocked by OH(-) ions, or protons may titrate a site in the pore necessary for ion permeation. These data demonstrate that the permeation properties of Cl(Ca)Cs are different from those of CFTR or ClC-1, and provide insights into the nature of the Cl(Ca)C pore.  相似文献   

19.
20.
Oxygen radicals are suspected as being a cause of the cellular damage that occurs at sites of inflammation. The phagocytic cells that accumulate in areas of inflammation produce superoxide, hydrogen peroxide, hydroxyl radical, and probably singlet oxygen in the extracellular fluid. The mechanism by which these oxygen molecules kill cells is unknown. To determine which of the oxygen species is responsible for the cellular killing, we exposed human fibroblasts in culture to oxygen radicals generated by the enzymatic action of xanthine oxidase upon acetaldehyde. Using the amount of chromium-51 released from labeled fibroblasts as an index of cellular death, we found that cells were protected only by interventions that reduce hydrogen peroxide concentration. Agents that inactivate superoxide, hydroxyl radical, and singlet oxygen were ineffective in limiting oxygen radical-induced cellular death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号