首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Messenger RNA has been isolated from day-old chick lens. Size characterization and heterologous cell-free translation demonstrate that the predominant species of mRNA present code for α-, β- and δ-crystallins. Total polysomal RNA and polysomal RNA which did not bind to oligo (dT)-cellulose translate in the cell-free system to give a crystallin profile qualitatively similar to that of poly(A)+ mRNA. RNA from postribosomal supernatant which binds to oligo(dT)-cellulose also translates to give crystallins, but the products are enriched for β-crystallins. Messenger RNAs isolated from 15-day embryo lens fiber and lens epithelium cells give products on translation which reflect the different protein compositions of these two cell types, as do mRNAs isolated from chick lenses at various developmental stages. Messenger RNAs were isolated from freshly excised 8-day embryo neural retina and from this tissue undergoing transdifferentiation into lens cells in cell culture. Cell-free translation demonstrates no detectable crystallin mRNAs in the freshly excised material, but by 42 days in cell culture, crystallin mRNAs are the most prominent species.  相似文献   

2.
Using hybridization reactions with a cDNA copy, the complexity of polysomal polyadenylated mRNA from the day-old chick lens was found to correspond to 5800–7200 sequences of average size, arranged in three abundance classes. Experiments with heterologous cDNAs suggest on a qualitative basis that many of the sequences expressed in 8-day embryonic neural retina and pigmented epithelium mRNAs are also present in lens mRNA. A cDNA fraction complementary to the most abundant lens mRNAs, representing an approximate minimum of four sequences, was used to assay the dosage of putative crystallin sequences in these and other embryonic tissues. Neural retina and pigmented epithelium cytoplasmic mRNAs have low concentrations of these sequences, which appear to be absent from mRNA prepared from headless bodies and muscle.  相似文献   

3.
During long-term cell culture of 8-day embryonic chick neural retina, lentoid bodies containing lens crystallins are developed. Although very low levels of crystallin can be detected in the embryonic neural retina, gross synthesis of each major crystallin class (α, anodal β, cathodal β, and δ) begins only after 12–16 days in culture. This occurs at least 10 days before lentoid bodies can be distinguished by eye. The concentration of each crystallin class was determined during lentoid development in cultures of both neural retina and lens epithelium. The proportions of crystallins in lentoid-containing cultures do not resemble those of embryonic lens fibres. Comparisons between two chick strains (N and Hy-1) differing in their growth rates revealed several differences in the crystallin compositions of lentoid bodies. These differences imply independent quantitative regulation for most or all of the crystallins.  相似文献   

4.
Hybrid genes coding for chloramphenicol acetyltransferase (CAT) with a non-specific retroviral, lens-specific delta-crystallin or lens-specific alpha-crystallin promoters were constructed to transfect the transdifferentiating (lentoidogenic) and non-transdifferentiating (non-lentoidogenic) cultures of chicken embryonic neural retina for assaying the state of determination towards lens differentiation. The expression occurred only when CAT genes with lens-specific promoters were transfected to the cultures maintained in the conditions permissive to lentoidogenesis. The expression of these exogenous, lens-specific CAT genes began at stages of culturing that were earlier than the expression of endogenous crystallin. Presumably, there are two steps in the transdifferentiation of neural retina into lens; acquisition of capacity to express crystallin genes and derepression of the endogenous crystallin genes.  相似文献   

5.
The effects of media containing undialysed serum (controls) or dialysed serum with or without ascorbic acid, were compared during the second half of the 41-day culture period in embryonic chick neural retina cultures, which had all been grown in control medium prior to 19 days. Conditions permitting greatest culture growth (controls) showed earlier and more extensive development of lentoids, greater accumulation of total crystallin and a higher proportion of δ relative to α+β crystallins. Conditions allowing least culture growth (dialysed serum) gave converse results throughout. Thus changes in culture growth rate apparently affect δ crystallin production more than α or β crystallin production. Insulin promotes growth in neural retina cultures, whether present throughout the culture period (in this case 31 days), or only from 18 days onwards. The frequency and survival of putative neuronal cell aggregates are both increased by insulin during the first 18 days of culture. Delta crystallin production during subsequent transdifferentiation is selectively promoted by insulin when present throughout, but this effect is largely obviated when insulin is present only from 18 days onwards. This anomaly could arise through percursor cell selection during the earlier phases of culture, since it is possible that some (not all) lentoids may be derived from aggregates of neuronal-like cells in neural retina cultures. Thus precursor cell selection as well as culture growth rate may influence the pattern of crystallin production during transdifferentiation.  相似文献   

6.
Terminally differentiated lens fibre cells are formed in the vertebrate lens throughout life. Lens fibre cells may also be obtained by an in vitro process termed transdifferentiation, from certain tissues of different developmental origin from lens, such as embryo neural retina. delta-Crystallin is the major protein in the chick embryo lens fibre cells, and also in transdifferentiated lens cells obtained from cultured embryonic neural retina. Lens crystallin proteins and mRNA are present at low levels in the intact embryonic neural retina but are no longer detectable in the early stages of neural retina cell culture. However, levels rise steeply in the later stages and crystallins become the major products in terminally transdifferentiating neural retina cultures. We have used this system to test the hypothesis that the patterns of DNA methylation in particular genes are correlated with gene expression. A number of developmentally regulated genes have been found to be undermethylated in tissues where they are expressed, and methylated in tissues where they are not. However this correspondence does not always hold true. Eight-day-old embryonic neural retina was cultured for the period of time during which crystallin gene expression increases 100-fold. DNA methylation in the delta-crystallin gene region was analysed at several stages of cell culture by using the restriction endonucleases HpaII and MspI which cleave at the sequence CCGG. The former enzyme cannot cleave internally methylated cytosine (CmCGG) while the latter cannot cleave externally methylated cytosine (mCCGG). We detect no change in the methylation of CCGG sites within the delta-crystallin gene regions during transdifferentiation. Since dramatic changes in delta-crystallin gene expression occur during this process we conclude that large scale alterations in the pattern of DNA methylation are not a necessary accompaniment to changes in gene activity.  相似文献   

7.
Polyadenylated mRNA was isolated from chick embryo liver following induction of hepatic porphyria. The RNA was translated in vitro using a wheat germ cell-free system and delta-aminolaevulinate synthase was identified in the translation products by indirect immunoprecipitation. The enzyme was not apparent in the translation products of polyadenylated RNA from non-induced livers. The molecular weight of delta-aminolaevulinate synthase synthesized in vitro was 70000 and the protein was estimated to represent up to 5% of total products synthesised in vitro. These data demonstrate for the first time that induction of chick embryo liver delta-aminolaevulinate synthase activity in hepatic porphyria correlates with a large increase in the translational capacity of isolated polyadenylated RNA for this enzyme and, together with preliminary cDNA . RNA hybridization studies, indicate that an increase in the level of delta-aminolaevulinic synthase mRNA is responsible.  相似文献   

8.
9.
Ultrastructural studies of thin-sectioned and freeze-cleaved materials were performed on developing retinal tissues of 3- to 9-day-old chick embryos to clarify the junctional structures between neural retinal cells and between neural retinal cells and cells of the pigmented epithelium. Frequency, size and position of gap junctions in developing neural retina are different at each stage of development. In 3-day-old embryos, some cells adhere to each other by gap junctions immediately below the outer limiting membrane of neural retinae. The size and number of gap junctions increase remarkably during 5-6 days of incubation. In this period of development, well developed gap junctions consisting of subcompartments of intramembrane particles are found between cell surfaces at both the outer limiting membrane region and the deeper portion of the neural retina. Gap junctions disappear thereafter, and at 7-5 days of incubation, small gap junctions are predominant between cell surfaces at the outer limiting membrane region, while the frequency of gap junctions in the deeper portion is very low. At 9 days of incubation, gap junctions are rarely found. Typical gap junctions are always found between neural retinal cells and those of the pigmented epithelium in embryos up to 7-5 days of incubation. Tight junctions are not found in the neural retina or between neural retina and pigmented epithelium throughout the stages examined.  相似文献   

10.
The formation of neural retina (NR) from retinal pigmented epithelium (RPE) of chick embryos in culture was investigated. In cultures of explants of PRE, depigmented, preretinal foci, consisting of 50 to 100 cells appeared in the pigmented central portion of the explant within three days. Then these depigmented cells increased rapidly in number and by about day 14 they formed characteristic spherical bodies, which were identified as a neural retinal-like structure (NR structure) by electron microscopic observations. Culture of explants of RPE from embryos of different stages showed that the capacity of embryonic RPE to form an NR structure decreased steadily with embryonic age from st. 24 to 27. At and after stage 27, no foci leading to the neural retinal differentiation were formed in the explants. Medium conditioned by cell cultures of chicken embryonic NR, RPE or chondrocytes had no effect on the formation of NR structures by explants of RPE.  相似文献   

11.
The term "transdifferentiation" has been used to describe the apparent phenotypic conversion of chick embryo neural retina Müller glial cells into lens-like cells in vitro. This phenotypic conversion is characterized by expression of such lens-specific proteins as delta crystallin and has been viewed as an example of cells transforming from the phenotype of a given tissue to that of another. We have identified a population of neuroglia-like cells in the embryonic chick retina which express high levels of delta crystallin as a function of normal development. The position and morphology of these cells is quite distinctive in that they form a loose meshwork which defines the boundary between the neural retina and the optic nerve head. These "boundary" cells are detectable as early as Day 5 of development through hatching. However, the meshwork structure formed by the cells is only readily observed between Days 8 and 9 of development. Double-immunolabeling procedures comparing delta crystallin staining to that of glial and neuronal markers suggest that these cells are a form of retinal Müller glial cell. The results show that under appropriate microenvironmental conditions, expression of delta crystallin falls into the normal repertoire of retinoblast cells. The results also demonstrate the presence of a cellular boundary defining the junction between the neural retina and the optic nerve, tissues that are ontogenetically and structurally continuous but functionally distinct.  相似文献   

12.
The possible multipotential nature of the neural retina of early chick embryos was examined by the technique of clonal cell culture. Cultures were prepared from cells dissociated from freshly excised neural retinas of 3.5-day-old chick embryos or from cells harvested from primary highdensity cultures. The following four colony types were obtained: colonies differentiating into “lentoid bodies”; colonies with pigment cells; colonies with both “lentoid bodies” and pigment cells; and colonies comprised entirely of unidentifiable cells. Neuronal differentiation occurred frequently in the early stages of culture (up to about 10 days). In some of these neuronal colonies, “lentoid bodies” and, rarely, both “lentoid bodies” and pigment cells differentiated after a further culture period of up to 30 days. Secondary colonies established from primary colonies after 9–10 days demonstrated that these original colonies fell into four different categories: those giving rise to secondary colonies containing only “lentoid bodies,” those giving rise to pigmented colonies only, those developing both lentoid and pigmented colonies, and finally those which gave rise to secondary colonies of all three types, lentoid, pigmented, and mixed colonies. When primary pigmented colonies were recloned at about 30 days after inoculation, the differentiated pigment cells transdifferentiated into lens. Whether multispecific colonies were really of clonal origin or not is discussed. The possible presence of a multipotent progenitor cell able to give rise to multispecific clones in the neural retina of 3.5-day-old chick embryos is suggested. A sequence of differentiation starting from multipotent neural retinal cells to be terminated with lens through the differentiation of neuronal and pigment cells is hypothetically proposed.  相似文献   

13.
Dissociated cells of brains (tel- and diencephalons) of 3.5-day-old chick embryos were cultivated in vitro under the cell culture conditions which are known to be permissive for neural retinal cells (NR cells) to transdifferentiate into lens and/or pigmented epithelial cells (PE cells). The differentiation of lentoid bodies (LBs) with lens-specific (δ-crystallin and PE cells with melanin granules was observed in such brain cultures.
LBs appeared in two different phases, i. e., 2–3 days and 16–30 days of cultivation, and after 40 days of culture these structures were formed in all 60 culture dishes. Sometimes, LBs were observed in foci of PE cells formed during earlier stages of brain cultures. When similar brain cultures were prepared with older embryos of 5-, 8.5-, 14-, and 16-days of incubation, no differentiation of lens and PE cells was observed.  相似文献   

14.
Globin mRNA from chick red blood cells at various stages of embryonic development have been isolated and characterized physically and functionally by translation in a cell-free system. Also described is the preparation and use of “cDNA” complementary to mRNA in the study of globin mRNA synthesis during the early stages of erythroid cell differentiation.  相似文献   

15.
Previous studies have shown that mouse fetal erythroid precursor cells isolated by an immunological technique synthesize little or no globin and contain little, if any, globin mRNA, as assayed in a cell-free system (translatable mRNA). After culture for 10 hours in the presence of erythropoietin, there is a marked increase in globin synthesis and in translatable globin mRNA. The present studies were designed to measure directly the content of globin mRNA sequences during erythroid cell differentiation, by molecular hybridization with 3H-labeled DNA complementary to globin mRNA. The results indicate that few, if any, globin mRNA sequences are present in the total RNA of erythroid precursor cells. There is little or no pool of untranslated globin mRNA in these cells. After 10 hours of culture with erythropoietin, there is an increase in globin mRNA content, as ;easured by a change in the Cot1/2 values obtained by cDNA: mRNA hybridization with (Co) representing the concentration of RNA. Between 0 and 22 hours of culture, there is a 250-fold rise, and between 22 and 44 hours, a further 2-fold increase in globin mRNA content. During the 44 hours in culture, the number of cells in culture increases 2- to 3-fold. The number of globin mRNA molecules rises in erythroid precursor cells to an average value of 1800 molecules/cell during 22 hours of culture. In cultures without added erythropoietin, the absolute number of cells decreases, however, cells presumably induced to differentiate by exposure to erythropoietin in vivo continue to differentiate in vitro, accumulating globin mRNA and initiating globin synthesis.  相似文献   

16.
The suppression mechanism of glutamine synthetase [EC 6.3.1.2] induction mediated by chick interferon preparation was investigated in embryonic chick neural retina cell cultures. A translational assay was used to measure the level of mRNA coding for the enzyme. RNA extracted from the retinal polysomes was chromatographed on oligo(dT)-cellulose and translated in a cell-free protein synthesizing system derived from wheat germ. The newly synthesized enzyme was isolated by immunoprecipitation with anti-enzyme gamma-globulin and identified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Neither polysomal profiles nor total protein synthesis directed by the RNA preparations was affected by interferon treatment. Comparing the amount of glutamine synthetase synthesized in vitro by equal amounts of mRNA fraction from retinas treated with or without interferon indicated that the suppression was associated with reduced level of the enzyme mRNA on polysomes.  相似文献   

17.
Chick embryo neural retinal cells transdifferentiate extensively into lens cells when cultured in Eagle's MEM containing horse and fetal calf sera (FHMEM). Such cultures express elevated levels of pp60c-src-associated tyrosine kinase activity relative to parallel cultures prevented from transdifferentiating by the addition of supplementary glucose (FHGMEM) or replacement of MEM by medium 199 (F199). Northern blotting and in vitro translation studies suggest that c-src mRNA levels are only slightly higher in late transdifferentiating (FHMEM) cultures as compared to parallel blocked (FHGMEM or F199) cultures. By immunocytochemical staining, we show that pp60c-src protein is largely localized in cell groups undergoing conversion into lens (i.e. expressing delta crystallin) in late FHMEM cultures. Initial studies of pp60c-src in chick lens tissues during development indicate that higher kinase activity is found in the epithelial cells relative to mature lens fibres. Thus pp60c-src may be expressed both during the differentiation of lens cells in vivo and during the transdifferentiation of neural retina cells into lens in vitro.  相似文献   

18.
Embryonic chick neural retina cells can transdifferentiate during long-term cell culture into either pigmented epithelium or lens fibres. We have found that some culture conditions influence the choice between these pathways. Pigment cell development is promoted by low initial cell densities and by the use of a medium based on Earle's salt formulation rather than Hank's, while lens fibre development is encouraged by high initial cell densities and by folding the cell sheet into multilayered regions. Some differences in in vitro cell properties of neural retina are reported for two genotypes previously found to exhibit differences in in vitro cell properties of lens epithelial cells.  相似文献   

19.
Poly(A) RNA was prepared from the intestine of anglerfish and was translated in a wheat germ cell-free system supplemented with 35S-methionine. SDS polyacrylamide gel electrophoresis of the labeled translation products revealed that the intestinal poly(A) RNA directs the synthesis of many proteins. Immunoprecipitations of the intestinal cell-free translation products with an antiserum to glucagon known to recognize anglerfish islet pre-proglucagon failed to identify an intestinal glucagon precursor. However, sensitive techniques of hybridization with a 32P-labelled cDNA containing the coding sequence for pancreatic glucagon identified a complementary RNA in the intestine. The mRNA of 620 bases is similar in size to the pre-proglucagon RNA in the islets (620–650 bases). These observations indicate that a gene encoding glucagon is expressed in the intestine, and that the mRNA encoding the intestinal glucagon precursor is of similar size to the pre-proglucagon mRNAs identified in the islets.  相似文献   

20.
Polyadenylated messenger RNA was isolated from goldfish retinas at various times following unilateral crush of the optic nerve. RNA was translated in a cell-free system and product proteins analyzed by two-dimensional gel electrophoresis and autofluorography. Poly(A)+ mRNA-directed protein synthesis revealed an 8-fold increase in the labeling of polypeptides of about 30 kd Mr and a pI of 5.5 in retinas 2 d following optic nerve crush, compared with control retina mRNA translation products. In vitro labeling of retinal proteins revealed the enhanced synthesis of comparable 30 kd proteins in 2 d post-crush retinas. Evidence presented suggests that this 30 kd protein cluster may correspond to fish 30 kd stress or heat-shock proteins (hsp-30).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号