首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
《Fly》2013,7(2):76-80
Hybrid males from reciprocal crosses of specific strains of the closely related species Drosophila mojavensis and Drosophila arizonae are sterile. The sterile hybrid males exhibit testis and seminal vesicle phenotypes that differ from their parental strains and from each other both in lengths of the organs and the development of the spermatids as seen in light and electron microscopy. Incompatibilities affecting spermiogenesis differ in reciprocal crosses, suggesting that hybrid male sterility may originate from a range of different underlying mechanisms.  相似文献   

2.
Hybrid dysgenesis-induced response to selection in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, the P-M and I-R systems of hybrid dysgenesis are associated with high rates of transposition of P and I elements, respectively, in the germlines of dysgenic hybrids formed by crossing females of strains without active elements to males of strains containing them. Transposition rates are not markedly accelerated in the reciprocal, nondysgenic hybrids. Previous attempts to evaluate the extent to which hybrid dysgenesis-mediated P transposition contributes to mutational variance for quantitative characters by comparing the responses to selection of P-M dysgenic and nondysgenic hybrids have given variable results. This experimental design has been extended to include an additional quantitative trait and the I-R hybrid dysgenesis system. The selection responses of lines founded from both dysgenic and nondysgenic crosses showed features that would be expected from the increase in frequency of initially rare genes with major effects on the selected traits. These results differ from those of previous experiments which showed additional selection response only in lines started from dysgenic crosses, and can be explained by the occasional occurrence of large effect transposable element-induced polygenic mutations in both dysgenic and nondysgenic selection lines. High rates of transposition in populations founded from nondysgenic crosses may account for the apparently contradictory results of the earlier selection experiments, and an explanation is proposed for its occurrence.  相似文献   

3.
We assessed the fertility (reproductive success, litter size, testis weight, spermatocyte-to-spermatid ratio) of F1s and backcrosses between different wild-derived outbred and inbred strains of two mouse subspecies, Mus musculus domesticus and M. m. musculus . A significant proportion of the F1 females between the outbred crosses did not reproduce, suggesting that female infertility was present. As the spermatocyte-to-spermatid ratio was correlated with testis weight, the latter was used to attribute a sterile vs. fertile phenotype to all males. Segregation proportions in the backcrosses of F1 females yielded 11 (inbred) to 17% (outbred) sterile males, suggesting the contribution of two to three major genetic factors to hybrid male sterility. Only one direction of cross between the inbred strains produced sterile F1 males, indicating that one factor was borne by the musculus X-chromosome. No such differences were observed between reciprocal crosses in the outbred strains. The involvement of the X chromosome in male sterility thus could not be assessed, but its contribution appears likely given the limited introgression of X-linked markers through the hybrid zone between the subspecies. However, we observed no sterile phenotypes in wild males from the hybrid zone, although testis weight tended to decrease in the centre of the transect.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 379–393.  相似文献   

4.
Barbash DA  Ashburner M 《Genetics》2003,163(1):217-226
Hybrid daughters of crosses between Drosophila melanogaster females and males from the D. simulans species clade are fully viable at low temperature but have agametic ovaries and are thus sterile. We report here that mutations in the D. melanogaster gene Hybrid male rescue (Hmr), along with unidentified polymorphic factors, rescue this agametic phenotype in both D. melanogaster/D. simulans and D. melanogaster/D. mauritiana F(1) female hybrids. These hybrids produced small numbers of progeny in backcrosses, their low fecundity being caused by incomplete rescue of oogenesis as well as by zygotic lethality. F(1) hybrid males from these crosses remained fully sterile. Hmr(+) is the first Drosophila gene shown to cause hybrid female sterility. These results also suggest that, while there is some common genetic basis to hybrid lethality and female sterility in D. melanogaster, hybrid females are more sensitive to fertility defects than to lethality.  相似文献   

5.
Hybrid females from Drosophila simulans females X Drosophila melanogaster males die as embryos while hybrid males from the reciprocal cross die as larvae. We have recovered a mutation in melanogaster that rescues the former hybrid females. It was located on the X chromosome at a position close to the centromere, and it was a zygotically acting gene, in contrast with mhr (maternal hybrid rescue) in simulans that rescues the same hybrids maternally. We named it Zhr (Zygotic hybrid rescue). The gene also rescues hybrid females from embryonic lethals in crosses of Drosophila mauritiana females X D. melanogaster males and of Drosophila sechellia females X D. melanogaster males. Independence of the hybrid embryonic lethality and the hybrid larval lethality suggested in a companion study was confirmed by employing two rescue genes, Zhr and Hmr (Hybrid male rescue), in doubly lethal hybrids. A model is proposed to explain the genetic mechanisms of hybrid lethalities as well as the evolutionary pathways.  相似文献   

6.
Pal Bhadra M  Bhadra U  Birchler JA 《Genetics》2006,174(3):1151-1159
A major model system for the study of evolutionary divergence between closely related species has been the unisexual lethality resulting from reciprocal crosses of Drosophila melanogaster and D. simulans. Sex-lethal (Sxl), a critical gene for sex determination, is misregulated in these hybrids. In hybrid males from D. melanogaster mothers, there is an abnormal expression of Sxl and a failure of localization of the male-specific lethal (MSL) complex to the X chromosome, which causes changes in gene expression. Introduction of a Sxl mutation into this hybrid genotype will allow expression of the MSL complex but there is no sequestration to the X chromosome. Lethal hybrid rescue (Lhr), which allows hybrid males from this cross to survive, corrects the SXL and MSL defects. The reciprocal cross of D. simulans mothers by D. melanogaster males exhibits underexpression of Sxl in embryos.  相似文献   

7.
Crosses between Drosophila melanogaster and D. simulans normally result in progeny that are either inviable or sterile. Recent discovery of strains that rescue these inviability and sterility phenotypes has made it possible to study the developmental basis of reproductive isolation between these two species in greater detail. By producing both rescued and unrescued hybrids and examining the protein product staining patterns of genes known to be involved in early germline development and gametogenesis, we have found that in crosses between D. simulans and D. melanogaster, hybrid female sterility results from the improper control of primordial germline proliferation, germline stem cell maintenance, and cystoblast formation and differentiation during early oogenesis. Rescued hybrid females are fertile, yet they generally have lower amounts of adult germline from the outset and show a premature degeneration of adult germline cells with age. In addition, older rescued hybrid females also exhibit mutant egg phenotypes associated with defects in dorso-ventral patterning which may result from the improper partitioning of cytoplasmic factors during early oogenesis that could stem from the early defect. Although a variety of germline and oogenic defects are described for the hybrid females, all of them can potentially result from the same underlying primary defect. Hybrid males from these same crosses, on the other hand, have no detectable germline in adult reproductive tissues, even when hybrid sterility rescue strains are used, indicating that male sterility and female sterility stem from distinctly different developmental defects.  相似文献   

8.
One of the most fundamental questions for understanding the origin of species is why genes that function to cause fertility in a pure-species genetic background fail to produce fertility in a hybrid genetic background. A related question is why the sex that is most often sterile or inviable in hybrids is the heterogametic (usually male) sex. In this survey, we have examined the extent and nature of differences in gene expression between fertile adult males of two Drosophila species and sterile hybrid males produced from crosses between these species. Using oligonucleotide microarrays and real-time quantitative polymerase chain reaction, we have identified and confirmed that differences in gene expression exist between pure species and hybrid males, and many of these differences are quantitative rather than qualitative. Furthermore, genes that are expressed primarily or exclusively in males, including several involved in spermatogenesis, are disproportionately misexpressed in hybrids, suggesting a possible genetic cause for their sterility.  相似文献   

9.
The genetic basis of hybrid male sterility among three closely related species, Drosophila bipectinata, D. parabipectinata and D. malerkotliana has been investigated by using backcross analysis methods. The role of Y chromosome, major hybrid sterility (MHS) genes (genetic factors) and cytoplasm (non-genetic factor) have been studied in the hybrids of these three species. In the species pair, bipectinata--parabipectinata, Y chromosome introgression of parabipectinata in the genomic background of bipectinata and the reciprocal Y chromosome introgression were unsuccessful as all males in second backcross generation were sterile. Neither MHS genes nor cytoplasm was found important for sterility. This suggests the involvement of X-Y, X-autosomes or polygenic interactions in hybrid male sterility. In bipectinata--malerkotliana and parabipectinata--malerkotliana species pairs, Y chromosome substitution in reciprocal crosses did not affect male fertility. Backcross analyses also show no involvement of MHS genes or cytoplasm in hybrid male sterility in these two species pairs. Therefore, X- autosome interaction or polygenic interaction is supposed to be involved in hybrid male sterility in these two species pairs. These findings also provide evidence that even in closely related species, genetic interactions underlying hybrid male sterility may vary.  相似文献   

10.
Reproductive-isolating mechanisms between nascent species may involve sperm-egg recognition and have been best described in externally fertilizing organisms where such recognition is essential in preventing undesirable fertilizations. However, reproductive barriers in internally fertilizing species differ in significant ways, and a direct role for sperm-egg interactions has yet to be demonstrated. Females of many strains of Drosophila melanogaster from Zimbabwe, Africa, do not mate readily with cosmopolitan males. This polymorphism in mate choice is postulated to represent incipient speciation. We now report that, in one direction, crosses between the above populations produce far fewer offspring than reciprocal crosses due to a lower rate of egg hatch. We established that egg inviability in these crosses was due to defects in fertilization. Thus, even in taxa with internal fertilization, gametic incompatibility may be a mechanism relevant to reproductive isolation during incipient speciation.  相似文献   

11.
Drosophila mojavensis and Drosophila arizonae are cactophilic flies that have been used extensively in speciation studies. Incomplete premating isolation, evidence of reinforcement, and a lack of recent introgression between these species point to a potentially important role for post‐zygotic isolating barriers in this system. Other than hybrid male sterility, however, post‐zygotic isolation between D. mojavensis and D. arizonae has received little attention. In this study, we examined viability and life‐history traits of D. mojavensis/D. arizonae F1 hybrids from sympatric crosses. Specifically, we reared hybrids and purebreds on the natural host cacti of each parental species and compared viability, development time, thorax length, and desiccation resistance between hybrids and purebreds. Interestingly, hybrid females from both crosses performed similarly or even better than purebred females. In contrast, hybrid sons of D. arizonae mothers, in addition to being sterile, had shorter average thorax length than males of both parental species, and hybrid males from both crosses had substantially lower desiccation resistance than D. mojavensis males. The probable cost to hybridization for D. mojavensis females resulting from reduced desiccation resistance of hybrid sons may have been an important selective factor in the history of reinforcement for crosses involving these females.  相似文献   

12.
We report here that mouse embryos can exhibit a significant incidence of blastomere fragmentation at the two-cell stage. The incidence of this is influenced by both the maternal and paternal genotype. Embryos from C57BL/6 mothers exhibit a very low incidence of fragmentation at the two-cell stage in crosses involving males of C57BL/6, DBA/2, AKR/J, or SJL strains but exhibit a significantly increased incidence of fragmentation in crosses involving C3H/HeJ males. Increased fragmentation is seen in embryos from C3H/HeJ females crossed with C57BL/6 males but not with C3H/HeJ males. Embryos obtained from reciprocal (C57BL/6 x C3H/HeJ) F1 hybrid females also exhibit an increased incidence of fragmentation at the two-cell stage when the hybrid females are mated to either C57BL/6 or C3H/HeJ males. Interestingly, the results differ significantly between reciprocal F1 hybrid females, indicating a parental origin effect, possibly a result of either genomic imprinting or differences in mitochondrial origin. We conclude that the incidence of blastomere fragmentation at the two-cell stage in the mouse is under the control of more than one genetic locus. We also conclude that blastomere fragmentation is affected by both parental genotypes. These results are relevant to understanding the genetic control blastomere fragmentation, which may contribute to evolutionary processes, affect the success of procedures such as cloning, and affect the outcome of assisted reproduction techniques.  相似文献   

13.
This study reports on exceptional males which are obtained by using Drosophila melanogaster mothers carrying the balancers In(1)FM6 or In(1)FM7 as one of their X chromosomes. The phenomenon was first observed in interspecific crosses between D. melanogaster females and males of its closest relatives which normally produce unisexual female hybrid progeny. Whereas hybrid sons from these crosses die as third instar larvae, the presence of the particular X balancers in the mother allows a low percentage of sons to survive. Similar sterile males are also observed among non-hybrid flies. Data are presented which suggest that the males thus generated could be hyperploid for part of their X chromosome as a result of a meiotic event in their mothers or else they could start life as female zygotes and change sex through a mitotic event at an early stage.  相似文献   

14.
High levels of female and male sterility were observed among the hybrids from one of the two reciprocal crosses between a wild strain of D. melanogaster known as pi2 and laboratory strains. The sterility, which is part of a common syndrome called hybrid dysgenesis, was found to be associated with the rudimentary condition of one or both of the ovaries or testes. All other tissues, including those of the reproductive system were normal, as were longevity and mating behavior. The morphological details of the sterility closely mimic the agametic condition occurring when germ cells are destroyed by irradiation or by the maternal-effect mutation, grandchildless. We suggest that sterility in hybrid dysgenesis is also caused by failure in the early development of germ cells. There is a thermo-sensitive period beginning at approximately the time of initiation of mitosis among primordial germ cells a few hours before the egg hatches and ending during the early larval stages. Our results suggest that hybrid dysgenesis, which also includes male recombination, mutation and other traits, may be limited to the germ line, and that each of the primordial germ cells develops, or fails to develop, independently of the others. This hypothesis is consistent with the observed frequencies of unilateral and bilateral sterility, with the shape of the thermosensitivity curves and with the fact that males are less often sterile than females. The features of this intraspecific hybrid sterility are found to resemble those seen in some interspecific Drosophila hybrids, especially those from the cross D. melanogaster X D. simulans.  相似文献   

15.
The study of the morphological defects unique to interspecific hybrids can reveal which developmental pathways have diverged between species. Drosophila melanogaster and D. santomea diverged more than 10 million years ago, and when crossed produce sterile adult females. Adult hybrid males are absent from all interspecific crosses. We aimed to determine the fate of these hybrid males. To do so, we tracked the development of hybrid females and males using classic genetic markers and techniques. We found that hybrid males die predominantly as embryos with severe segment‐specification defects while a large proportion of hybrid females embryos hatch and survive to adulthood. In particular, we show that most male embryos show a characteristic abdominal ablation phenotype, not observed in either parental species. This suggests that sex‐specific embryonic developmental defects eliminate hybrid males in this interspecific cross. The study of the developmental abnormalities that occur in hybrids can lead to the understanding of cryptic molecular divergence between species sharing a conserved body plan.  相似文献   

16.
Subspecies of Drosophila pseudoobscura, one occurring in the United States and the other in Bogota, Columbia, exhibit Haldane's Rule in one direction of the cross. Additionally, D. pseudoobscura produces two sperm types: short, sterile sperm and long, fertile, sperm. Here I examine the relationship between the production of short and long sperm and hybrid sterility. Fertile and sterile hybrid males produce a greater proportion of short sperm compared to parental males with sterile hybrids producing mainly short, immotile sperm. Sperm transfer and storage patterns were similar between fertile hybrid and parental strains; and unexpectedly, short, immotile sperm from sterile hybrids were stored. These findings raise the question of whether different genetic mechanisms disrupt both sperm heteromorphic production and sperm motility and whether this indicates that females exert some control over sperm storage.  相似文献   

17.
We investigated the role that courtship and aggressive interactions may have for the maintenance of reproductive isolation betweenDrosophila silvestris andD. heteroneura. We examined the behavioral bases of reproductive isolation between the parental species and we examined the courtship success of each sex of both reciprocal F1 hybrids when paired with the parental species. We found reduced copulation success among heterotypic parental pairs compared to homotypic pairs, which was primarily due to the lack of courtship initiation betweenD. silvestris males andD. heteroneura females. When hybrid males from both reciprocal crosses were paired with parental females their copulation successes were not significantly different from that of parental males. In contrast, hybrid females from both crosses had reduced copulation success withD. silvestris males, which in turn was primarily due to a reduced success of reaching later stages of courtship. The time spent in copulation by hybrid males was intermediate between the two parental males. We studied aggression by observing the interactions of males of heterotypic pairs, both between the parental species and between the hybrids and parental males. A lack of aggressive interactions betweenD. silvestris males andD. heteroneura males in addition to the lack of courtship suggests thatD. silvestris males do not respond toD. heteroneura individuals of either sex. Hybrid males were equally successful in winning fights with bothD. silvestris andD. heteroneura males. These results indicate that the behavioral isolation betweenD. silvestris andD. heteroneura may be largely a consequence of the earliest stages of interactions. The two species may differ either in activity levels or in morphological or chemical traits that are important for species and mate recognition. The relatively high copulation and aggressive success of hybrids indicates that sexual selection against hybrids alone is unlikely to be a sufficient force to reduce gene flow and maintain species distinctions.  相似文献   

18.
Striking differences in egg structure are exhibited by strains ofDrosophila hydei but do not act as barriers to inter-strain crosses. The structure of eggs of inter-strain hybrid females suggest that the observed differences in egg architecture are of genetic origin. One characteristic, the location of the maturation island, differs in eggs of the reciprocal hybrids. There is some suggestion that the paternal genome may be important in determining the character.  相似文献   

19.
Speciation can occur through the presence of reproductive isolation barriers that impede mating, restrict cross-fertilization, or render inviable/sterile hybrid progeny. The D. willistoni subgroup is ideally suited for studies of speciation, with examples of both allopatry and sympatry, a range of isolation barriers, and the availability of one species complete genome sequence to facilitate genetic studies of divergence. D. w. willistoni has the largest geographic distribution among members of the Drosophila willistoni subgroup, spanning from Argentina to the southern United States, including the Caribbean islands. A subspecies of D. w. willistoni, D. w. quechua, is geographically separated by the Andes mountain range and has evolved unidirectional sterility, in that only male offspring of D. w. quechua females × D. w. willistoni males are sterile. Whether D. w. willistoni flies residing east of the Andes belong to one or more D. willistoni subspecies remains unresolved. Here we perform fecundity assays and show that F1 hybrid males produced from crosses between different strains found in Central America, North America, and northern Caribbean islands are reproductively isolated from South American and southern Caribbean island strains as a result of unidirectional hybrid male sterility. Our results show the existence of a reproductive isolation barrier between the northern and southern strains and suggest a subdivision of the previously identified D. willistoni willistoni species into 2 new subspecies.  相似文献   

20.
Sawamura K  Karr TL  Yamamoto MT 《Genetica》2004,120(1-3):253-260
Interspecific crosses between Drosophila melanogaster and Drosophila simulans usually produce sterile unisexual hybrids. The barrier preventing genetic analysis of hybrid inviability and sterility has been taken away by the discovery of a D. simulans strain which produces fertile female hybrids. D. simulans genes in the cytological locations of 21A1 to 22C1-23B1 and 30F3-31C5 to 36A2-7 have been introgressed into the D. melanogaster genetic background by consecutive backcrosses. Flies heterozygous for the introgression are fertile, while homozygotes are sterile both in females and males. The genes responsible for the sterility have been mapped in the introgression. The male sterility is caused by the synergistic effect of multiple genes, while the female sterility genes have been localized to a 170 kb region (32D2 to 32E4) containing 20 open reading frames. Thus, the female sterility might be attributed to a single gene with a large effect. We have also found that the Lethal hybrid rescue mutation which prevents the inviability of male hybrids from the cross of D. melanogaster females and D. simulans males cannot rescue those carrying the introgression, suggesting that D. simulans genes maybe non-functional in this hybrid genotype. The genes responsible for the inviability have not been separated from the female sterility genes by recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号