首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
During the past several years, it has become increasingly possible to study adult stem cells in their native territories within tissues. These studies have provided new evidence for the existence of stem cells in the breast, muscle, lung and kidney and have led to a deeper understanding of the best-known stem cells in Drosophila and mice. Tissue stem cells are turning out to be diverse, with varying division rates, lineage lengths, and mechanisms of regulation. In addition, stem cells are now known to engage in a wide variety of interactions with neighboring cells and extracellular matrices, and to respond to various neural and hormonal signals. Stem cell niches are also diverse, sometimes harboring multiple stem cell types. Internally, a stem cell's chromatin and cytoskeletal organization play key roles. Understanding how stem cells and their progeny are controlled will illuminate fundamental biological mechanisms that govern the construction and maintenance of tissues within metazoan animals.  相似文献   

4.
Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate age-associated changes in HFSCs and their niches, thereby promoting hair regrowth.  相似文献   

5.

Objectives

Adult stem cells (ASCs) have great potential for tissue regeneration; however, comparative studies of ASCs from different niches are required to understand the characteristics of each population for their potential therapeutic uses.

Results

We compared the proliferation, stem cell marker expression, and differentiation potential of ASCs from bone marrow, skin dermis, and adipose tissue. ASCs from bone marrow and skin dermis showed 50–100 % increased proliferation in comparison to the ASCs from adipose tissues. Furthermore, ASCs from each stem cell niche showed differential expression of stem cell marker genes, and preferentially differentiated into cell types of their tissue of origin.

Conclusion

Different characters of each ASC might be major factors for their effective use for therapeutics and tissue regeneration.
  相似文献   

6.

Background  

The persistence in adult teleost fish of retinal stem cells that exhibit all of the features of true 'adult stem cells' – self-renewal, multipotency, and the capacity to respond to injury by mitotic activation with the ability to regenerate differentiated tissues – has been known for several decades. However, the specialized cellular and molecular characteristics of these adult retinal stem cells and the microenvironmental niches that support their maintenance in the differentiated retina and regulate their activity during growth and regeneration have not yet been elucidated.  相似文献   

7.
Dental pulp (DP) can be extracted from child's primary teeth (deciduous), whose loss occurs spontaneously by about 5 to 12 years. Thus, DP presents an easy accessible source of stem cells without ethical concerns. Substantial quantities of stem cells of an excellent quality and at early (2-5) passages are necessary for clinical use, which currently is a problem for use of adult stem cells. Herein, DPs were cultured generating stem cells at least during six months through multiple mechanical transfers into a new culture dish every 3-4 days. We compared stem cells isolated from the same DP before (early population, EP) and six months after several mechanical transfers (late population, LP). No changes, in both EP and LP, were observed in morphology, expression of stem cells markers (nestin, vimentin, fibronectin, SH2, SH3 and Oct3/4), chondrogenic and myogenic differentiation potential, even after cryopreservation. Six hours after DP extraction and in vitro plating, rare 5-bromo-2'-deoxyuridine (BrdU) positive cells were observed in pulp central part. After 72 hours, BrdU positive cells increased in number and were found in DP periphery, thus originating a multicellular population of stem cells of high purity. Multiple stem cell niches were identified in different zones of DP, because abundant expression of nestin, vimentin and Oct3/4 proteins was observed, while STRO-1 protein localization was restricted to perivascular niche. Our finding is of importance for the future of stem cell therapies, providing scaling-up of stem cells at early passages with minimum risk of losing their "stemness".  相似文献   

8.
Epithelial stem cells: stepping out of their niche   总被引:4,自引:0,他引:4  
Christiano AM 《Cell》2004,118(5):530-532
In this issue of Cell, have shown that two subpopulations of cells exist within the hair follicle stem cell niche. Despite being partially differentiated, clonal populations of suprabasal bulge region cells can regenerate skin and hair follicles as well as a new stem cell niche. The findings suggest that early lineage commitments of epithelial cells in the hair follicle may be reversible.  相似文献   

9.
Therapies using adult stem cells often require mechanical manipulation such as injection or incorporation into scaffolds. However, force-induced rupture and mechanosensitivity of cells during manipulation is largely ignored. Here, we image cell mechanical structures and perform a biophysical characterization of three different types of human adult stem cells: bone marrow CD34+ hematopoietic, bone marrow mesenchymal and perivascular mesenchymal stem cells. We use micropipette aspiration to characterize cell mechanics and quantify deformation of subcellular structures under force and its contribution to global cell deformation. Our results suggest that CD34+ cells are mechanically suitable for injection systems since cells transition from solid- to fluid-like at constant aspiration pressure, probably due to a poorly developed actin cytoskeleton. Conversely, mesenchymal stem cells from the bone marrow and perivascular niches are more suitable for seeding into biomaterial scaffolds since they are mechanically robust and have developed cytoskeletal structures that may allow cellular stable attachment and motility through solid porous environments. Among these, perivascular stem cells cultured in 6% oxygen show a developed cytoskeleton but a more compliant nucleus, which can facilitate the penetration into pores of tissues or scaffolds. We confirm the relevance of our measurements using cell motility and migration assays and measure survival of injected cells. Since different types of adult stem cells can be used for similar applications, we suggest considering mechanical properties of stem cells to match optimal mechanical characteristics of therapies.  相似文献   

10.
11.
12.
Haematopoietic stem cell (HSC) niches are specialized microenvironments that contain stem cells and regulate their maintenance. Cells at the interface of bone and the bone marrow (the endosteum) contribute to the creation of HSC niches. It remains uncertain whether this interface itself is a niche, or whether endosteal cells secrete factors that diffuse to nearby niches. Vascular and/or perivascular cells may also create niches as many HSCs are observed around sinusoidal blood vessels, and perivascular cells secrete factors that regulate HSC maintenance. Do endosteal and perivascular cells create distinct niches, or do they contribute to a common niche? We discuss a range of niche models consistent with recent evidence.  相似文献   

13.
Adult tissue stem cells adjust to environmental changes. A new study in the?mouse intestine reveals that caloric restriction causes Paneth cells to repress mTORC1 signaling; this in turn stimulates proliferation of neighboring stem cells.  相似文献   

14.
Aging is unmistakable and undeniable in mammals. Interestingly, mice develop cataracts, muscle atrophy, osteoporosis, obesity, diabetes and cognitive deficits after just 2–3 postnatal years, while it takes seven or more decades for the same age-specific phenotypes to develop in humans. Thus, chronological age corresponds differently with biological age in metazoan species and although many theories exist, we do not understand what controls the rate of mammalian aging. One interesting idea is that species-specific rate of aging represents a ratio of tissue attrition to tissue regeneration. Furthermore, current findings suggest that the age-imposed biochemical changes in the niches of tissue stem cells inhibit performance of this regenerative pool, which leads to the decline of tissue maintenance and repair. If true, slowing down stem cell and niche aging, thereby promoting tissue regeneration, could slow down the process of tissue and organismal aging. In this regard, recent studies of heterochronic parabiosis provide important clues as to the mechanisms of stem cell aging and suggest novel strategies for enhancing tissue repair in the old. Here we review current literature on the relationship between the vigor of tissue stem cells and the process of aging, with an emphasis on the rejuvenation of old tissues by the extrinsic modifications of stem cell niches.  相似文献   

15.
It remains poorly understood how the haematopoietic stem/progenitor cells (HSPC) are attracted to their niches and the functional consequences of such interaction. In the present study, we show that the cell cycle regulator cyclin A1 in association with vascular endothelial growth factor receptor 1 (VEGFR1), is required for HSPC and their niches to maintain their function and proper interaction. In the absence of cyclin A1, the HSPC in the BM are increased in their frequency and display an increased migratory and homing ability. Concomitantly, the ability of the endosteal and central BM niche zones to attract and home the wild-type HSPC is significantly reduced in cyclin A1-null mice as compared to the wild-type controls. The impaired proliferation and homing of HSPC in the BM of cyclin A1-null mice are attributed to the increased density of microvessels in the endosteal and central BM niche zones, which is associated with the increased VEGFR1 expression. Thus, modulation of cyclin A1 and VEGFR1 in HSPC and their niches may provide new insights into therapeutic approaches.  相似文献   

16.
Aging is unmistakable and undeniable in mammals. Interestingly, mice develop cataracts, muscle atrophy, osteoporosis, obesity, diabetes and cognitive deficits after just 2–3 postnatal years, while it takes seven or more decades for the same age-specific phenotypes to develop in humans. Thus, chronological age corresponds differently with biological age in metazoan species and although many theories exist, we do not understand what controls the rate of mammalian aging. One interesting idea is that species-specific rate of aging represents a ratio of tissue attrition to tissue regeneration. Furthermore, current findings suggest that the age-imposed biochemical changes in the niches of tissue stem cells inhibit performance of this regenerative pool, which leads to the decline of tissue maintenance and repair. If true, slowing down stem cell and niche aging, thereby promoting tissue regeneration, could slow down the process of tissue and organismal aging. In this regard, recent studies of heterochronic parabiosis provide important clues as to the mechanisms of stem cell aging and suggest novel strategies for enhancing tissue repair in the old. Here we review current literature on the relationship between the vigor of tissue stem cells and the process of aging, with an emphasis on the rejuvenation of old tissues by the extrinsic modifications of stem cell niches.  相似文献   

17.
Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.  相似文献   

18.
Plasticity,niches, and the use of stem cells   总被引:13,自引:0,他引:13  
Stem cells possess the ability to self-renew and generate multiple cell types of the tissues in which they reside. Several studies have reported transdifferentiation events between different somatic stem cells. These properties have created tremendous excitement about the prospect of using stem cells from easily accessible sources for tissue engineering. However, recently, the plasticity of stem cells has met with several strong challenges. In this meeting review, we will discuss issues surrounding reports of transdifferentiation, the molecular mechanisms that govern stem cell states, and progress toward putting stem cells to use.  相似文献   

19.
Kiel MJ  Yilmaz OH  Iwashita T  Yilmaz OH  Terhorst C  Morrison SJ 《Cell》2005,121(7):1109-1121
To improve our ability to identify hematopoietic stem cells (HSCs) and their localization in vivo, we compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors (MPPs). Cell surface receptors of the SLAM family, including CD150, CD244, and CD48, were differentially expressed among functionally distinct progenitors. HSCs were highly purified as CD150(+)CD244(-)CD48(-) cells while MPPs were CD244(+)CD150(-)CD48(-) and most restricted progenitors were CD48(+)CD244(+)CD150(-). The primitiveness of hematopoietic progenitors could thus be predicted based on the combination of SLAM family members they expressed. This is the first family of receptors whose combinatorial expression precisely distinguishes stem and progenitor cells. The ability to purify HSCs based on a simple combination of SLAM receptors allowed us to identify HSCs in tissue sections. Many HSCs were associated with sinusoidal endothelium in spleen and bone marrow, though some HSCs were associated with endosteum. HSCs thus occupy multiple niches, including sinusoidal endothelium in diverse tissues.  相似文献   

20.
Kimura Y  Ding B  Imai N  Nolan DJ  Butler JM  Rafii S 《PloS one》2011,6(10):e26918
The mechanism by which hematopoietic stem and progenitor cells (HSPCs) through interaction with their niches maintain and reconstitute adult hematopoietic cells is unknown. To functionally and genetically track localization of HSPCs with their niches, we employed novel mutant loxPs, lox66 and lox71 and Cre-recombinase technology to conditionally delete c-Kit in adult mice, while simultaneously enabling GFP expression in the c-Kit-deficient cells. Conditional deletion of c-Kit resulted in hematopoietic failure and splenic atrophy both at steady state and after marrow ablation leading to the demise of the treated adult mice. Within the marrow, the c-Kit-expressing GFP(+) cells were positioned to Kit ligand (KL)-expressing niche cells. This c-Kit-mediated cellular adhesion was essential for long-term maintenance and expansion of HSPCs. These results lay the foundation for delivering KL within specific niches to maintain and restore hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号