首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-density genetic map, an essential tool for comparative genomic studies and quantitative trait locus fine mapping, can also facilitate genome sequence assembly. The sequence-based marker technology known as restriction site-associated DNA (RAD) enables synchronous, single nucleotide polymorphism marker discovery, and genotyping using massively parallel sequencing. We constructed a high-density linkage map for carnation (Dianthus caryophyllus L.) based on simple sequence repeat (SSR) markers in combination with RAD markers developed by double-digest RAD sequencing (ddRAD-seq). A total of 2404 (285 SSR and 2119 RAD) markers could be assigned to 15 linkage groups spanning 971.5 cM, with an average marker interval of 0.4 cM. The total length of scaffolds with identified map positions was 95.6 Mb, which is equivalent to 15.4 % of the estimated genome size. The generated map is the first SSR and RAD marker-based high-density linkage map reported for carnation. The ddRAD-seq pipeline developed in this study should also help accelerate genetic and genomics analyses and molecular breeding of carnation and other non-model crops.  相似文献   

2.
Zoysiagrass (Zoysia spp.), belonging to the genus Zoysia in the subfamily Chloridoideae, is widely used in domestic lawns, sports fields and as forage. We constructed high‐density genetic maps of Zoysia japonica using a restriction site‐associated DNA sequencing (RAD‐Seq) approach and an F1 mapping population derived from a cross between ‘Carrizo’ and ‘El Toro’. Two linkage maps were constructed, one for each of the parents. A map consisting of 2408 RAD markers distributed on 21 linkage groups was constructed for ‘Carrizo’. Another map with 1230 RAD markers mapped on 20 linkage groups was constructed for ‘El Toro’. The average distance between adjacent markers of the two maps was at 0.56 and 1.4 cM, respectively. Comparative genomics analysis was carried out among zoysiagrass, rice and sorghum genomes and a highly conserved collinearity in the gene order was observed among the three genomes. Chromosome collinearity was disrupted at centromeric regions for each chromosome pair between zoysiagrass and sorghum genomes. However, no obvious synteny gaps were observed across the centromeric regions between zoysiagrass and rice genomes. Two homologous chromosomes for each of the 10 sorghum chromosomes were found in the zoysiagrass genome, indicating an allotetraploid origin for zoysiagrass. The reduction of the basic chromosome number from 12 to 10 in chloridoids and panicoids took place via independent single‐step nested chromosome fusion events after the two subfamilies diverged from a common ancestor. The genetic maps will assist in genome sequence assembly, targeted gene isolation and comparative genomic analyses among grasses.  相似文献   

3.
We report on the construction of sex-specific linkage maps, the identification of sex-linked markers and the genome size estimation for the brine shrimp Artemia franciscana. Overall, from the analysis of 433 AFLP markers segregating in a 112 full-sib family we identified 21 male and 22 female linkage groups (2n = 42), covering 1,041 and 1,313 cM respectively. Fifteen putatively homologous linkage groups, including the sex linkage groups, were identified between the female and male linkage map. Eight sex-linked AFLP marker alleles were inherited from the female parent, supporting the hypothesis of a WZ–ZZ sex-determining system. The haploid Artemia genome size was estimated to 0.93 Gb by flow cytometry. The produced Artemia linkage maps provide the basis for further fine mapping and exploring of the sex-determining region and are a possible marker resource for mapping genomic loci underlying phenotypic differences among Artemia species.  相似文献   

4.
High throughput sequencing technologies are being applied to an increasing number of model species with a high-quality reference genome. The application and analyses of whole-genome sequence data in non-model species with no prior genomic information are currently under way. Recent sequencing technologies provide new opportunities for gathering genomic data in natural populations, laying the empirical foundation for future research in the field of conservation and population genomics. Here we present the case study of the Bornean elephant, which is the most endangered subspecies of Asian elephant and exhibits very low genetic diversity. We used two different sequencing platforms, the Roche 454 FLX (shotgun) and Illumina, GAIIx (Restriction site associated DNA, RAD) to evaluate the feasibility of the two methodologies for the discovery of de novo markers (single nucleotide polymorphism, SNPs and microsatellites) using low coverage data. Approximately, 6,683 (shotgun) and 14,724 (RAD) SNPs were detected within our elephant sequence dataset. Genotyping of a representative sample of 194 SNPs resulted in a SNP validation rate of ∼ 83 to 94% and 17% of the loci were polymorphic with a low diversity (H o = 0.057). Different numbers of microsatellites were identified through shotgun (27,226) and RAD (868) techniques. Out of all di-, tri-, and tetra-microsatellite loci, 1,706 loci had sufficient flanking regions (shotgun) while only 7 were found with RAD. All microsatellites were monomorphic in the Bornean but polymorphic in another elephant subspecies. Despite using different sample sizes, and the well known differences in the two platforms used regarding sequence length and throughput, the two approaches showed high validation rate. The approaches used here for marker development in a threatened species demonstrate the utility of high throughput sequencing technologies as a starting point for the development of genomic tools in a non-model species and in particular for a species with low genetic diversity.  相似文献   

5.
Optimal integration of next-generation sequencing into mainstream research requires re-evaluation of how problems can be reasonably overcome and what questions can be asked. One potential application is the rapid acquisition of genomic information to identify microsatellite loci for evolutionary, population genetic and chromosome linkage mapping research on non-model and not previously sequenced organisms. Here, we report on results using high-throughput sequencing to obtain a large number of microsatellite loci from the venomous snake Agkistrodon contortrix, the copperhead. We used the 454 Genome Sequencer FLX next-generation sequencing platform to sample randomly ∼27 Mbp (128 773 reads) of the copperhead genome, thus sampling about 2% of the genome of this species. We identified microsatellite loci in 11.3% of all reads obtained, with 14 612 microsatellite loci identified in total, 4564 of which had flanking sequences suitable for polymerase chain reaction primer design. The random sequencing-based approach to identify microsatellites was rapid, cost-effective and identified thousands of useful microsatellite loci in a previously unstudied species.  相似文献   

6.
Naveira H  Fontdevila A 《Genetics》1986,114(3):841-857
The genetic basis of hybrid sterility has been investigated in backcross segmental hybrids between two sibling species, Drosophila buzzatii and D. serido. Asynapsis of homologous bands in hybrid polytene chromosomes has been used to identify the D. serido chromosome segments introgressed into the D. buzzatti genome. All the investigated chromosomes contain male sterility factors. For autosomes, sterility is produced when an introgressed D. serido chromosome segment, or combination of segments, reaches a minimum size. On the other hand, any introgressed X chromosome segment from D. serido, irrespective of its size, produces either male hybrid sterility or inviability.  相似文献   

7.
A BAC-based integrated linkage map of the silkworm Bombyx mori   总被引:3,自引:0,他引:3  

Background

In 2004, draft sequences of the model lepidopteran Bombyx mori were reported using whole-genome shotgun sequencing. Because of relatively shallow genome coverage, the silkworm genome remains fragmented, hampering annotation and comparative genome studies. For a more complete genome analysis, we developed extended scaffolds combining physical maps with improved genetic maps.

Results

We mapped 1,755 single nucleotide polymorphism (SNP) markers from bacterial artificial chromosome (BAC) end sequences onto 28 linkage groups using a recombining male backcross population, yielding an average inter-SNP distance of 0.81 cM (about 270 kilobases). We constructed 6,221 contigs by fingerprinting clones from three BAC libraries digested with different restriction enzymes, and assigned a total of 724 single copy genes to them by BLAST (basic local alignment search tool) search of the BAC end sequences and high-density BAC filter hybridization using expressed sequence tags as probes. We assigned 964 additional expressed sequence tags to linkage groups by restriction fragment length polymorphism analysis of a nonrecombining female backcross population. Altogether, 361.1 megabases of BAC contigs and singletons were integrated with a map containing 1,688 independent genes. A test of synteny using Oxford grid analysis with more than 500 silkworm genes revealed six versus 20 silkworm linkage groups containing eight or more orthologs of Apis versus Tribolium, respectively.

Conclusion

The integrated map contains approximately 10% of predicted silkworm genes and has an estimated 76% genome coverage by BACs. This provides a new resource for improved assembly of whole-genome shotgun data, gene annotation and positional cloning, and will serve as a platform for comparative genomics and gene discovery in Lepidoptera and other insects.  相似文献   

8.

Background

The different regions of a genome do not evolve at the same rate. For example, comparative genomic studies have suggested that the sex chromosomes and the regions harbouring the immune defence genes in the Major Histocompatability Complex (MHC) may evolve faster than other genomic regions. The advent of the next generation sequencing technologies has made it possible to study which genomic regions are evolutionary liable to change and which are static, as well as enabling an increasing number of genome studies of non-model species. However, de novo sequencing of the whole genome of an organism remains non-trivial. In this study, we present the draft genome of the black grouse, which was developed using a reference-guided assembly strategy.

Results

We generated 133 Gbp of sequence data from one black grouse individual by the SOLiD platform and used a combination of de novo assembly and chicken reference genome mapping to assemble the reads into 4572 scaffolds with a total length of 1022 Mb. The draft genome well covers the main chicken chromosomes 1 ~ 28 and Z which have a total length of 1001 Mb. The draft genome is fragmented, but has a good coverage of the homologous chicken genes. Especially, 33.0% of the coding regions of the homologous genes have more than 90% proportion of their sequences covered. In addition, we identified ~1 M SNPs from the genome and identified 106 genomic regions which had a high nucleotide divergence between black grouse and chicken or between black grouse and turkey.

Conclusions

Our results support the hypothesis that the chromosome X (Z) evolves faster than the autosomes and our data are consistent with the MHC regions being more liable to change than the genome average. Our study demonstrates how a moderate sequencing effort can be combined with existing genome references to generate a draft genome for a non-model species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-180) contains supplementary material, which is available to authorized users.  相似文献   

9.
We have constructed a linkage map for the peppered moth (Biston betularia), the classical ecological genetics model of industrial melanism, aimed both at localizing the network of loci controlling melanism and making inferences about chromosome dynamics. The linkage map, which is based primarily on amplified fragment length polymorphisms (AFLPs) and genes, consists of 31 linkage groups (LGs; consistent with the karyotype). Comparison with the evolutionarily distant Bombyx mori suggests that the gene content of chromosomes is highly conserved. Gene order is conserved on the autosomes, but noticeably less so on the Z chromosome, as confirmed by physical mapping using bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH). Synteny mapping identified three pairs of B. betularia LGs (11/29, 23/30 and 24/31) as being orthologous to three B. mori chromosomes (11, 23 and 24, respectively). A similar finding in an outgroup moth (Plutella xylostella) indicates that the B. mori karyotype (n=28) is a phylogenetically derived state resulting from three chromosome fusions. As with other Lepidoptera, the B. betularia W chromosome consists largely of repetitive sequence, but exceptionally we found a W homolog of a Z-linked gene (laminin A), possibly resulting from ectopic recombination between the sex chromosomes. The B. betularia linkage map, featuring the network of known melanization genes, serves as a resource for melanism research in Lepidoptera. Moreover, its close resemblance to the ancestral lepidopteran karyotype (n=31) makes it a useful reference point for reconstructing chromosome dynamic events and ancestral genome architectures. Our study highlights the unusual evolutionary stability of lepidopteran autosomes; in contrast, higher rates of intrachromosomal rearrangements support a special role of the Z chromosome in adaptive evolution and speciation.  相似文献   

10.
11.
The pearl oyster, Pinctada fucata (P. fucata), is one of the marine bivalves that is predominantly cultured for pearl production. To obtain more genetic information for breeding purposes, we constructed a high-density linkage map of P. fucata and identified quantitative trait loci (QTL) for growth-related traits. One F1 family, which included the two parents, 48 largest progeny and 50 smallest progeny, was sampled to construct a linkage map using restriction site-associated DNA sequencing (RAD-Seq). With low coverage data, 1956.53 million clean reads and 86,342 candidate RAD loci were generated. A total of 1373 segregating SNPs were used to construct a sex-average linkage map. This spanned 1091.81 centimorgans (cM), with 14 linkage groups and an average marker interval of 1.41 cM. The genetic linkage map coverage, Coa, was 97.24%. Thirty-nine QTL-peak loci, for seven growth-related traits, were identified using the single-marker analysis, nonparametric mapping Kruskal-Wallis (KW) test. Parameters included three for shell height, six for shell length, five for shell width, four for hinge length, 11 for total weight, eight for soft tissue weight and two for shell weight. The QTL peak loci for shell height, shell length and shell weight were all located in linkage group 6. The genotype frequencies of most QTL peak loci showed significant differences between the large subpopulation and the small subpopulation (P<0.05). These results highlight the effectiveness of RAD-Seq as a tool for generation of QTL-targeted and genome-wide marker data in the non-model animal, P. fucata, and its possible utility in marker-assisted selection (MAS).  相似文献   

12.
Targeted genome capture combined with next-generation sequencing was used to analyze 2.9 Mb of the DFNB79 interval on chromosome 9q34.3, which includes 108 candidate genes. Genomic DNA from an affected member of a consanguineous family segregating recessive, nonsyndromic hearing loss was used to make a library of fragments covering the DFNB79 linkage interval defined by genetic analyses of four pedigrees. Homozygosity for eight previously unreported variants in transcribed sequences was detected by evaluating a library of 402,554 sequencing reads and was later confirmed by Sanger sequencing. Of these variants, six were determined to be polymorphisms in the Pakistani population, and one was in a noncoding gene that was subsequently excluded genetically from the DFNB79 linkage interval. The remaining variant was a nonsense mutation in a predicted gene, C9orf75, renamed TPRN. Evaluation of the other three DFNB79-linked families identified three additional frameshift mutations, for a total of four truncating alleles of this gene. Although TPRN is expressed in many tissues, immunolocalization of the protein product in the mouse cochlea shows prominent expression in the taper region of hair cell stereocilia. Consequently, we named the protein taperin.  相似文献   

13.

Background

Ziziphus Mill. (jujube), the most valued genus of Rhamnaceae, comprises of a number of economically and ecologically important species such as Z. jujuba Mill., Z. acidojujuba Cheng et Liu and Z. mauritiana Lam. Single nucleotide polymorphism (SNP) markers and a high-density genetic map are of great benefit to the improvement of the crop, mapping quantitative trait loci (QTL) and analyzing genome structure. However, such a high-density map is still absent in the genus Ziziphus and even the family Rhamnaceae. The recently developed restriction-site associated DNA (RAD) marker has been proven to be most powerful in genetic map construction. The objective of this study was to construct a high-density linkage map using the RAD tags generated by next generation sequencing.

Results

An interspecific F1 population and their parents (Z. jujuba Mill. ‘JMS2’ × Z. acidojujuba Cheng et Liu ‘Xing 16’) were genotyped using a mapping-by-sequencing approach, to generate RAD-based SNP markers. A total of 42,784 putative high quality SNPs were identified between the parents and 2,872 high-quality RAD markers were grouped in genetic maps. Of the 2,872 RAD markers, 1,307 were linked to the female genetic map, 1,336 to the male map, and 2,748 to the integrated map spanning 913.87 centi-morgans (cM) with an average marker interval of 0.34 cM. The integrated map contained 12 linkage groups (LGs), consistent with the haploid chromosome number of the two parents.

Conclusion

We first generated a high-density genetic linkage map with 2,748 RAD markers for jujube and a large number of SNPs were also developed. It provides a useful tool for both marker-assisted breeding and a variety of genome investigations in jujube, such as sequence assembly, gene localization, QTL detection and genome structure comparison.  相似文献   

14.
Ott A  Trautschold B  Sandhu D 《PloS one》2011,6(7):e22306
Soybean is a major crop that is an important source of oil and proteins. A number of genetic linkage maps have been developed in soybean. Specifically, hundreds of simple sequence repeat (SSR) markers have been developed and mapped. Recent sequencing of the soybean genome resulted in the generation of vast amounts of genetic information. The objectives of this investigation were to use SSR markers in developing a connection between genetic and physical maps and to determine the physical distribution of recombination on soybean chromosomes. A total of 2,188 SSRs were used for sequence-based physical localization on soybean chromosomes. Linkage information was used from different maps to create an integrated genetic map. Comparison of the integrated genetic linkage maps and sequence based physical maps revealed that the distal 25% of each chromosome was the most marker-dense, containing an average of 47.4% of the SSR markers and 50.2% of the genes. The proximal 25% of each chromosome contained only 7.4% of the markers and 6.7% of the genes. At the whole genome level, the marker density and gene density showed a high correlation (R2) of 0.64 and 0.83, respectively with the physical distance from the centromere. Recombination followed a similar pattern with comparisons indicating that recombination is high in telomeric regions, though the correlation between crossover frequency and distance from the centromeres is low (R2 = 0.21). Most of the centromeric regions were low in recombination. The crossover frequency for the entire soybean genome was 7.2%, with extremes much higher and lower than average. The number of recombination hotspots varied from 1 to 12 per chromosome. A high correlation of 0.83 between the distribution of SSR markers and genes suggested close association of SSRs with genes. The knowledge of distribution of recombination on chromosomes may be applied in characterizing and targeting genes.  相似文献   

15.
The reliability of genome analysis and proficiency of genetic manipulation requires knowledge of the correspondence between the genetic and cytogenetic maps. In the present study, we integrated cytogenetic and microsatellite-based linkage maps for Zhikong scallop, Chlamys farreri. Thirty-eight marker-anchored BAC clones standing for the 19 linkage groups were used to be FISH probes. Of 38 BAC clones, 30 were successfully located on single chromosome by FISH and used to integrate the genetic and cytogenetic map. Among the 19 linkage groups, 12 linkage groups were physically anchored by 2 markers, 6 linkage groups were anchored by 1 marker, and one linkage group was not anchored any makers by FISH. In addition, using two-color FISH, six linkage groups were distinguished by different chromosomal location; linkage groups LG6 and LG16 were placed on chromosome 10, LG8 and LG18 on chromosome 14. As a result, 18 of 19 linkage groups were localized to 17 pairs of chromosomes of C. farreri. We first integrated genetic and cytogenetic map for C. farreri. These 30 chromosome specific BAC clones in the cytogenetic map could be used to identify chromosomes of C. farreri. The integrated map will greatly facilitate molecular genetic studies that will be helpful for breeding applications in C. farreri and the upcoming genome projects of this species.  相似文献   

16.
A significant amount of genetic and genomic resources have been developed in papaya (Carica papaya, $ {\hbox{2n = 2}} \times { = 18} $ ), including genetic linkage maps consisting of nine major and three minor linkage groups. However, the 12 genetic linkage groups have not been integrated with the nine chromosomes of papaya. Bacterial artificial chromosome (BAC) clones associated with each linkage group were recently isolated. These linkage group-specific BACs were mapped to meiotic pachytene chromosomes of papaya using fluorescence in situ hybridization (FISH). The FISH mapping results integrated the 12 linkage groups into the nine papaya chromosomes. We developed a pachytene chromosome-based high resolution karyotype for the hermaphrodite plant genome of papaya cultivar SunUp. The chromosomal distribution of heterochromatin in the papaya genome is provided in the karyotype with the X chromosome representing the most euchromatic chromosome in the papaya genome. FISH mapping also revealed a significant amplification of sequences related to the 5S ribosomal RNA genes, which was detected in the male-specific region of the Y chromosome, but not in the corresponding region in the X chromosome.  相似文献   

17.
J D Manthey  J Klicka  G M Spellman 《Heredity》2015,115(2):165-172
With methods for sequencing thousands of loci for many individuals, phylogeographic studies have increased inferential power and the potential for applications to new questions. In songbirds, strong patterns of inter-chromosomal synteny, the published genome of a songbird and the ability to obtain thousands of genetic loci for many individuals permit the investigation of differentiation between and diversity within lineages across chromosomes. Here, we investigate patterns of differentiation and diversity in Certhia americana, a widespread North American songbird, using next-generation sequencing. Additionally, we reassess previous phylogeographic studies within the group. Based on ~30 million sequencing reads and more than 16 000 single-nucleotide polymorphisms in 41 individuals, we identified a strong positive relationship between genetic differentiation and chromosome size, with a negative relationship between genetic diversity and chromosome size. A combination of selection and drift may explain these patterns, although we found no evidence for selection. Because the observed genomic patterns are very similar between widespread, allopatric clades, it is unlikely that selective pressures would be so similar across such different ecological conditions. Alternatively, the accumulation of fixed differences between lineages and loss of genetic variation within lineages due to genetic drift alone may explain the observed patterns. Due to relatively higher recombination rates on smaller chromosomes, larger chromosomes would, on average, accumulate fixed differences between lineages and lose genetic variation within lineages faster, leading to the patterns observed here in C. americana.  相似文献   

18.
A significant feature of the genomes of Lepidoptera, butterflies and moths, is the high conservation of chromosome organization. Recent remarkable progress in genome sequencing of Lepidoptera has revealed that syntenic gene order is extensively conserved across phylogenetically distant species. The ancestral karyotype of Lepidoptera is thought to be n=31; however, that of the most well-studied moth, Bombyx mori, is n=28, and diverse studies suggest that three chromosomal fusion events occurred in this lineage. To identify the boundaries between predicted ancient fusions involving B. mori chromosomes 11, 23 and 24, we constructed fluorescence in situ hybridization (FISH)-based chromosome maps of the European corn borer, Ostrinia nubilalis (n=31). We first determined a 511 Mb genomic sequence of the Asian corn borer, O. furnacalis, a congener of O. nubilalis, and isolated bacterial artificial chromosomes and fosmid clones that were expected to localize in candidate regions for the boundaries using these sequences. Combined with FISH and genetic analysis, we narrowed down the candidate regions to 40 kb–1.5 Mb, in strong agreement with a previous estimate based on the genome of a butterfly, Melitaea cinxia. The significant difference in the lengths of the candidate regions where no functional genes were observed may reflect the evolutionary time after fusion events.  相似文献   

19.

Background

Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.

Results

A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.

Conclusion

Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号