首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Degringolade (Dgrn) encodes a Drosophila SUMO-targeted ubiquitin ligase (STUbL) protein similar to that of mammalian RNF4. Dgrn facilitates the ubiquitylation of the HES protein Hairy, which disrupts the repressive activity of Hairy by inhibiting the recruitment of its cofactor Groucho. We show that Hey and all HES family members, except Her, interact with Dgrn and are substrates for its E3 ubiquitin ligase activity. Dgrn displays dynamic subcellular localization, accumulates in the nucleus at times when HES family members are active and limits Hey and HES family activity during sex determination, segmentation and neurogenesis. We show that Dgrn interacts with the Notch signaling pathway by it antagonizing the activity of E(spl)-C proteins. dgrn null mutants are female sterile, producing embryos that arrest development after two or three nuclear divisions. These mutant embryos exhibit fragmented or decondensed nuclei and accumulate higher levels of SUMO-conjugated proteins, suggesting a role for Dgrn in genome stability.  相似文献   

4.
5.
6.
Notch signaling mediates multiple developmental decisions in Drosophila. In this study, we have examined the role of Notch signaling in Drosophila larval optic lobe development. Loss of function in Notch or its ligand Delta leads to loss of the lamina and a smaller medulla. The neuroepithelial cells in the optic lobe in Notch or Delta mutant brains do not expand but instead differentiate prematurely into medulla neuroblasts, which lead to premature neurogenesis in the medulla. Clonal analyses of loss-of-function alleles for the pathway components, including N, Dl, Su(H), and E(spl)-C, indicate that the Delta/Notch/Su(H) pathway is required for both maintaining the neuroepithelial stem cells and inhibiting medulla neuroblast formation while E(spl)-C is only required for some aspects of the inhibition of medulla neuroblast formation. Conversely, Notch pathway overactivation promotes neuroepithelial cell expansion while suppressing medulla neuroblast formation and neurogenesis; numb loss of function mimics Notch overactivation, suggesting that Numb may inhibit Notch signaling activity in the optic lobe neuroepithelial cells. Thus, our results show that Notch signaling plays a dual role in optic lobe development, by maintaining the neuroepithelial stem cells and promoting their expansion while inhibiting their differentiation into medulla neuroblasts. These roles of Notch signaling are strikingly similar to those of the JAK/STAT pathway in optic lobe development, raising the possibility that these pathways may collaborate to control neuroepithelial stem cell maintenance and expansion, and their differentiation into the progenitor cells.  相似文献   

7.
In teleosts and amphibians, the proneuronal domains, which give rise to primary-motor, primary-inter and Rohon-Beard (RB) neurons, are established at the beginning of neurogenesis as three longitudinal stripes along the anteroposterior axis in the dorsal ectoderm. The proneuronal domains are prefigured by the expression of basic helix-loop-helix (bHLH) proneural genes, and separated by domains (inter-proneuronal domains) that do not express the proneural genes. Little is known about how the formation of these domains is spatially regulated. We have found that the zebrafish hairy- and enhancer of split-related (Her) genes her3 and her9 are expressed in the inter-proneuronal domains, and are required for their formation. her3 and her9 expression was not regulated by Notch signaling, but rather controlled by positional cues, in which Bmp signaling is involved. Inhibition of Her3 or Her9 by antisense morpholino oligonucleotides led to ectopic expression of the proneural genes in part of the inter-proneuronal domains. Combined inhibition of Her3 and Her9 induced ubiquitous expression of proneural and neuronal genes in the neural plate, and abolished the formation of the inter-proneuronal domains. Furthermore, inhibition of Her3/Her9 and Notch signaling led to ubiquitous and homogeneous expression of proneural and neuronal genes in the neural plate, revealing that Her3/Her9 and Notch signaling have distinct roles in neurogenesis. These data indicate that her3 and her9 function as prepattern genes that link the positional dorsoventral polarity information in the posterior neuroectoderm to the spatial regulation of neurogenesis.  相似文献   

8.
Previous studies have shown that Notch signaling not only regulates the number of early differentiating neurons, but also maintains proliferating neural precursors in the neural tube. Although it is well known that Notch signaling is closely related to the differentiation of adult neural stem cells, none of transgenic zebrafish provides a tool to figure out the relationship between Notch signaling and the differentiation of neural precursors. The goal of this study was to characterize Her4-positive cells by comparing the expression of a fluorescent Her4 reporter in Tg[her4-dRFP] animals with a GFAP reporter in Tg[gfap-GFP] adult zebrafish. BrdU incorporation indicated that dRFP-positive cells were proliferating and a double labeling assay revealed that a significant fraction of the Her4-dRFP positive population was also GFAP-GFP positive. Our observations suggest that a reporter line with Notch-dependent gene expression can provide a tool to examine proliferating neural precursors and/or neuronal/glial precursors in the development of the adult nervous system to examine the model in which Notch signaling maintains proliferating neural precursors in the neural tube.  相似文献   

9.
Organization and function of the Notch signaling pathway in Drosophila are best understood with respect to its role in the process of selection of neural progenitor cells. However, there is evidence that, besides neurogenesis, the Notch signaling pathway is involved in several other developmental processes, one of which is the selection of muscle progenitor cells. Thus, the number of these cells is increased in neurogenic mutants, and it has been proposed that muscle progenitor cells are selected from clusters of equivalent cells expressing genes of the achaete-scute gene complex (AS-C). Here, I present evidence for the participation of additional elements of the Notch signaling pathway in myogenesis. Gal4 mediated expression of a Notch variant, E(spl) and Hairless shows that the selection of muscle progenitor cells obeys principles apparently identical to those acting at the selection of neural progenitor cells.  相似文献   

10.
11.
12.
Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate.   总被引:11,自引:0,他引:11  
BACKGROUND: The Notch receptor triggers a wide range of cell fate choices in higher organisms. In Drosophila, segregation of neural from epidermal lineages results from competition among equivalent cells. These cells express achaete/scute genes, which confer neural potential. During lateral inhibition, a single neural precursor is selected, and neighboring cells are forced to adopt an epidermal fate. Lateral inhibition relies on proteolytic cleavage of Notch induced by the ligand Delta and translocation of the Notch intracellular domain (NICD) to the nuclei of inhibited cells. The activated NICD, interacting with Suppressor of Hairless [Su(H)], stimulates genes of the E(spl) complex, which in turn repress the proneural genes achaete/scute. RESULTS: Here, we describe new alleles of Notch that specifically display loss of microchaetae sensory precursors. This phenotype arises from a repression of neural fate, by a Notch signaling distinct from that involved in lateral inhibition. We show that the loss of sensory organs associated with this phenotype results from a constitutive activation of a Deltex-dependent Notch-signaling event. These novel Notch alleles encode truncated receptors lacking the carboxy terminus of the NICD, which is the binding site for the repressor Dishevelled (Dsh). Dsh is known to be involved in crosstalk between Wingless and Notch pathways. CONCLUSIONS: Our results reveal an antineural activity of Notch distinct from lateral inhibition mediated by Su(H). This activity, mediated by Deltex (Dx), represses neural fate and is antagonized by elements of the Wingless (Wg)-signaling cascade to allow alternative cell fate choices.  相似文献   

13.
14.
15.
16.
Eye development in Drosophila involves the Notch signaling pathway at several consecutive steps. At first, Notch signaling is required for stable expression of the proneural gene atonal (ato), thereby maintaining neural potential of the cells. Second, in a process of lateral inhibition, Notch signaling is necessary to confine neural commitment to individual photoreceptor founder cells. Later on, the successive addition of cells to maturing ommatidia is under Notch control. In contrast to previous assumptions, the recessive Notch allele split (Nspl) involves specifically loss of the early proneural Notch activity in the eye, which is in agreement with bristle defects as well. As a result, fewer cells gain neural potential and fewer ommatidia are founded. Enhancement of this phenotype by the dominant mutation Enhancer of split [E(spl)D] happens within the remaining proneural cells, in which Ato expression is abolished. In line with genetic data, this process occurs primarily at the protein level due to altered protein-protein interactions between the aberrant E(spl)D and proneural proteins. Nspl is the first Notch mutation known to specifically affect Notch inductive processes during eye development.  相似文献   

17.
The mechanisms that guide progenitor cell fate and differentiation in the vertebrate central nervous system (CNS) are poorly understood. Gain-of-function experiments suggest that Notch signaling is involved in the early stages of mammalian neurogenesis. On the basis of the expression of Notch1 by putative progenitor cells of the vertebrate CNS, we have addressed directly the role of Notch1 in the development of the mammalian brain. Using conditional gene ablation, we show that loss of Notch1 results in premature onset of neurogenesis by neuroepithelial cells of the midbrain-hindbrain region of the neural tube. Notch1-deficient cells do not complete differentiation but are eliminated by apoptosis, resulting in a reduced number of neurons in the adult cerebellum. We have also analyzed the effects of Notch1 ablation on gliogenesis in vivo. Our results show that Notch1 is required for both neuron and glia formation and modulates the onset of neurogenesis within the cerebellar neuroepithelium.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号