首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malcom JW 《PloS one》2011,6(6):e21541
Dispersal is an important mechanism contributing to both ecological and evolutionary dynamics. In metapopulation and metacommunity ecology, dispersal enables new patches to be colonized; in evolution, dispersal counter-acts local selection, leading to regional homogenization. Here, I consider a three-patch metacommunity in which two species, each with a limiting quantitative trait underlain by gene networks of 16 to 256 genes, compete with one another and disperse among patches. Incorporating dispersal among heterogeneous patches introduces a tradeoff not observed in single-patch simulations: if the difference between gene network size of the two species is greater than the difference in dispersal ability (e.g., if the ratio of network sizes is larger than the ratio of dispersal abilities), then genetic architecture drives community outcome. However, if the difference in dispersal abilities is greater than gene network differences, then any adaptive advantages afforded by genetic architecture are over-ridden by dispersal. Thus, in addition to the selective pressures imposed by competition that shape the genetic architecture of quantitative traits, dispersal among patches creates an escape that may further alter the effects of different genetic architectures. These results provide a theoretical expectation for what we may observe as the field of ecological genomics develops.  相似文献   

2.
Malcom JW 《PloS one》2011,6(4):e14747
The environments in which organisms live and reproduce are rarely static, and as the environment changes, populations must evolve so that phenotypes match the challenges presented. The quantitative traits that map to environmental variables are underlain by hundreds or thousands of interacting genes whose allele frequencies and epistatic relationships must change appropriately for adaptation to occur. Extending an earlier model in which individuals possess an ecologically-critical trait encoded by gene networks of 16 to 256 genes and random or scale-free topology, I test the hypothesis that smaller, scale-free networks permit longer persistence times in a constantly-changing environment. Genetic architecture interacting with the rate of environmental change accounts for 78% of the variance in trait heritability and 66% of the variance in population persistence times. When the rate of environmental change is high, the relationship between network size and heritability is apparent, with smaller and scale-free networks conferring a distinct advantage for persistence time. However, when the rate of environmental change is very slow, the relationship between network size and heritability disappears and populations persist the duration of the simulations, without regard to genetic architecture. These results provide a link between genes and population dynamics that may be tested as the -omics and bioinformatics fields mature, and as we are able to determine the genetic basis of ecologically-relevant quantitative traits.  相似文献   

3.
Malcom JW 《PloS one》2011,6(2):e14645
One of the goals of biology is to bridge levels of organization. Recent technological advances are enabling us to span from genetic sequence to traits, and then from traits to ecological dynamics. The quantitative genetics parameter heritability describes how quickly a trait can evolve, and in turn describes how quickly a population can recover from an environmental change. Here I propose that we can link the details of the genetic architecture of a quantitative trait--i.e., the number of underlying genes and their relationships in a network--to population recovery rates by way of heritability. I test this hypothesis using a set of agent-based models in which individuals possess one of two network topologies or a linear genotype-phenotype map, 16-256 genes underlying the trait, and a variety of mutation and recombination rates and degrees of environmental change. I find that the network architectures introduce extensive directional epistasis that systematically hides and reveals additive genetic variance and affects heritability: network size, topology, and recombination explain 81% of the variance in average heritability in a stable environment. Network size and topology, the width of the fitness function, pre-change additive variance, and certain interactions account for ~75% of the variance in population recovery times after a sudden environmental change. These results suggest that not only the amount of additive variance, but importantly the number of loci across which it is distributed, is important in regulating the rate at which a trait can evolve and populations can recover. Taken in conjunction with previous research focused on differences in degree of network connectivity, these results provide a set of theoretical expectations and testable hypotheses for biologists working to span levels of organization from the genotype to the phenotype, and from the phenotype to the environment.  相似文献   

4.
Understanding the interplay between ecological processes and the evolutionary dynamics of quantitative traits in natural systems remains a major challenge. Two main theoretical frameworks are used to address this question, adaptive dynamics and quantitative genetics, both of which have strengths and limitations and are often used by distinct research communities to address different questions. In order to make progress, new theoretical developments are needed that integrate these approaches and strengthen the link to empirical data. Here, we discuss a novel theoretical framework that bridges the gap between quantitative genetics and adaptive dynamics approaches. ‘Oligomorphic dynamics’ can be used to analyse eco-evolutionary dynamics across different time scales and extends quantitative genetics theory to account for multimodal trait distributions, the dynamical nature of genetic variance, the potential for disruptive selection due to ecological feedbacks, and the non-normal or skewed trait distributions encountered in nature. Oligomorphic dynamics explicitly takes into account the effect of environmental feedback, such as frequency- and density-dependent selection, on the dynamics of multi-modal trait distributions and we argue it has the potential to facilitate a much tighter integration between eco-evolutionary theory and empirical data.  相似文献   

5.
Hyma KE  Caicedo AL 《Molecular ecology》2011,20(17):3491-3493
Plasticity allows for changes in phenotype in response to environmental cues, often facilitating local adaptation to seasonal environments. Phenotypic plasticity alone, however, may not always be sufficient to ensure adaptation to new localities. In particular, changing cues associated with shifting seasonal regimes may no longer induce appropriate phenotypic responses in new environments ( Nicotra et al. 2010 ). Plastic responses must thus evolve to avoid being maladaptive. To date, the extent to which plastic responses can change and the genetic mechanisms by which this can happen have remained elusive. In this issue of Molecular Ecology, Blackman et al. (2011a) harness natural variation in flowering time among populations of the wild sunflower, Helianthus annuus, to demonstrate that plasticity has indeed evolved in this species. Remarkably, they are able to detect changes in gene expression that are associated with both a loss of plasticity and a reversal of the plastic response. These changes occur in two separate, but integrated, regulatory pathways controlling the transition to flowering, suggesting that complex regulatory networks that incorporate multiple environmental and developmental cues may facilitate the evolution of plastic responses. This study leverages knowledge from plant genetic models to provide a surprising level of insight into the evolution of an adaptive trait in a non‐model species. Through discoveries of the roles of gene duplication and network modularity in the evolution of plastic responses, the study raises questions about the degree to which species‐specific network architectures may act as a constraint to the potential of adaptation.  相似文献   

6.
生态群落中不同物种间发生多样化的相互作用, 形成了复杂的种间互作网络。复杂生态网络的结构如何影响群落的生态系统功能及稳定性是群落生态学的核心问题之一。种间互作直接影响到物质和能量在生态系统不同组分之间的流动和循环以及群落构建过程, 使得网络结构与生态系统功能和群落稳定性密切相关。在群落及生态系统水平上开展种间互作网络研究将为群落的构建机制、生物多样性维持、生态系统稳定性、物种协同进化和性状分化等领域提供新的视野。当前生物多样性及生态系统功能受到全球变化的极大影响, 研究种间互作网络的拓扑结构、构建机制、稳定性和生态功能也可为生物多样性的保护和管理提供依据。该文从网络结构、构建机制、网络结构和稳定性关系、种间互作对生态系统功能的影响等4个方面综述当前种间网络研究进展, 并提出在今后的研究中利用机器学习和多层网络等来探究环境变化对种间互作网络结构和功能的影响, 并实现理论和实证研究的有效整合。  相似文献   

7.
A central problem in the study of species interactions is to understand the underlying ecological and evolutionary mechanisms that shape and are shaped by trait evolution in interacting assemblages. The patterns of interaction among species (i.e. network structure) provide the pathways for evolution and coevolution, which are modulated by how traits affect individual fitness (i.e. functional mechanisms). Functional mechanisms, in turn, also affect the likelihood of an ecological interaction, shaping the structure of interaction networks. Here, we build adaptive network models to explore the potential role of coevolution by two functional mechanisms, trait matching and exploitation barrier, in driving trait evolution and the structure of interaction networks. We use these models to explore how different scenarios of coevolution and functional mechanisms reproduce the empirical network patterns observed in antagonistic and mutualistic interactions and affect trait evolution. Scenarios assuming coevolutionary feedback with a strong effect of functional mechanism better reproduce the empirical structure of networks. Antagonistic and mutualistic networks, however, are better explained by different functional mechanisms and the structure of antagonisms is better reproduced than that of mutualisms. Scenarios assuming coevolution by strong trait matching between interacting partners better explain the structure of antagonistic networks, whereas those assuming strong barrier effects better reproduce the structure of mutualistic networks. The dynamics resulting from the feedback between strong functional mechanisms and coevolution favor the stability of antagonisms and mutualisms. Selection favoring trait matching reduces temporal trait fluctuation and the magnitude of arms races in antagonisms, whereas selection due to exploitation barriers reduces temporal trait fluctuations in mutualisms. Our results indicate that coevolutionary models better reproduce the network structure of antagonisms than those of mutualisms and that different functional mechanisms may favor the persistence of antagonistic and mutualistic interacting assemblages.  相似文献   

8.
Species may be able to respond to changing environments by a combination of adaptation and migration. We study how adaptation affects range shifts when it involves multiple quantitative traits evolving in response to local selection pressures and gene flow. All traits develop clines shifting in space, some of which may be in a direction opposite to univariate predictions, and the species tracks its environmental optimum with a constant lag. We provide analytical expressions for the local density and average trait values. A species can sustain faster environmental shifts, develop a wider range and greater local adaptation when spatial environmental variation is low (generating low migration load) and multitrait adaptive potential is high. These conditions are favoured when nonlinear (stabilising) selection is weak in the phenotypic direction of the change in optimum, and genetic variation is high in the phenotypic direction of the selection gradient.  相似文献   

9.
Colin Olito  Jeremy W. Fox 《Oikos》2015,124(4):428-436
Plant–pollinator mutualistic networks represent the ecological context of foraging (for pollinators) and reproduction (for plants and some pollinators). Plant–pollinator visitation networks exhibit highly conserved structural properties across diverse habitats and species assemblages. The most successful hypotheses to explain these network properties are the neutrality and biological constraints hypotheses, which posit that species interaction frequencies can be explained by species relative abundances, and trait mismatches between potential mutualists respectively. However, previous network analyses emphasize the prediction of metrics of qualitative network structure, which may not represent stringent tests of these hypotheses. Using a newly documented temporally explicit alpine plant–pollinator visitation network, we show that metrics of both qualitative and quantitative network structure are easy to predict, even by models that predict the identity or frequency of species interactions poorly. A variety of phenological and morphological constraints as well as neutral interactions successfully predicted all network metrics tested, without accurately predicting species observed interactions. Species phenology alone was the best predictor of observed interaction frequencies. However, all models were poor predictors of species pairwise interaction frequencies, suggesting that other aspects of species biology not generally considered in network studies, such as reproduction for dipterans, play an important role in shaping plant–pollinator visitation network structure at this site. Future progress in explaining the structure and dynamics of mutualistic networks will require new approaches that emphasize accurate prediction of species pairwise interactions rather than network metrics, and better reflect the biology underlying species interactions.  相似文献   

10.
Climate change poses critical challenges for population persistence in natural communities, for agriculture and environmental sustainability, and for food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and whether adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in‐depth understanding of these eco‐evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting‐edge omics toolkits, novel ecological strategies, newly developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.  相似文献   

11.
Species across the tree of life can switch between asexual and sexual reproduction. In facultatively sexual species, the ability to switch between reproductive modes is often environmentally dependent and subject to local adaptation. However, the ecological and evolutionary factors that influence the maintenance and turnover of polymorphism associated with facultative sex remain unclear. We studied the ecological and evolutionary dynamics of reproductive investment in the facultatively sexual model species, Daphnia pulex. We found that patterns of clonal diversity, but not genetic diversity varied among ponds consistent with the predicted relationship between ephemerality and clonal structure. Reconstruction of a multi-year pedigree demonstrated the coexistence of clones that differ in their investment into male production. Mapping of quantitative variation in male production using lab-generated and field-collected individuals identified multiple putative quantitative trait loci (QTL) underlying this trait, and we identified a plausible candidate gene. The evolutionary history of these QTL suggests that they are relatively young, and male limitation in this system is a rapidly evolving trait. Our work highlights the dynamic nature of the genetic structure and composition of facultative sex across space and time and suggests that quantitative genetic variation in reproductive strategy can undergo rapid evolutionary turnover.  相似文献   

12.
Morphological changes following changes in species' distribution and phenology have been suggested to be the third universal response to global environmental change. Although structural size and body mass result from different genetic, physiological, and ecological mechanisms, they are used interchangeably in studies evaluating population responses to environmental change. Using a 22‐year (1991–2013) dataset including 1768 individuals, we investigated the coupled dynamics of size and mass in a hibernating mammal, the Alpine marmot (Marmota marmota), in response to local environmental conditions. We (i) quantified temporal trends in both traits, (ii) determined the environmental drivers of trait dynamics, and (iii) identified the life‐history processes underlying the observed changes. Both phenotypic traits were followed through life: we focused on the initial trait value (juvenile size and mass) and later‐life development (annual change in size [Δsize] and mass [Δmass]). First, we demonstrated contrasting dynamics between size and mass over the study period. Juvenile size and subsequent Δsize showed significant declines, whereas juvenile mass and subsequent Δmass remained constant. As a consequence of smaller size associated with a similar mass, individuals were in better condition in recent years. Second, size and mass showed different sensitivities to environmental variables. Both traits benefited from early access to resources in spring, whereas Δmass, particularly in early life, also responded to summer and winter conditions. Third, the interannual variation in both traits was caused by changes in early life development. Our study supports the importance of considering the differences between size and mass responses to the environment when evaluating the mechanisms underlying population dynamics. The current practice of focusing on only one trait in population modeling can lead to misleading conclusions when evaluating species' resilience to contemporary climate change.  相似文献   

13.
Ecological conditions such as nutrition can change genetic covariances between traits and accelerate or slow down trait evolution. As adaptive trait correlations can become maladaptive following rapid environmental change, poor or stressful environments are expected to weaken genetic covariances, thereby increasing the opportunity for independent evolution of traits. Here, we demonstrate the differences in genetic covariance among multiple behavioral and morphological traits (exploration, aggression, and body weight) between southern field crickets (Gryllus bimaculatus) raised in favorable (free‐choice) versus stressful (protein‐deprived) nutritional environments. We also quantify the extent to which differences in genetic covariance structures contribute to the potential for the independent evolution of these traits. We demonstrate that protein‐deprived environments tend to increase the potential for traits to evolve independently, which is caused by genetic covariances that are significantly weaker for crickets raised on protein‐deprived versus free‐choice diets. The weakening effects of stressful environments on genetic covariances tended to be stronger in males than in females. The weakening of the genetic covariance between traits under stressful nutritional environments was expected to facilitate the opportunity for adaptive evolution across generations. Therefore, the multivariate gene‐by‐environment interactions revealed here may facilitate behavioral and morphological adaptations to rapid environmental change.  相似文献   

14.
The majority of work on genetic regulatory networks has focused on environmental and mutational robustness, and much less attention has been paid to the conditions under which a network may produce an evolvable phenotype. Sexually dimorphic characters often show rapid rates of change over short evolutionary time scales and while this is thought to be due to the strength of sexual selection acting on the trait, a dimorphic character with an underlying pleiotropic architecture may also influence the evolution of the regulatory network that controls the character and affect evolvability. As evolvability indicates a capacity for phenotypic change and mutational robustness refers to a capacity for phenotypic stasis, increases in evolvability may show a negative relationship with mutational robustness. I tested this with a computational model of a genetic regulatory network and found that, contrary to expectation, sexually dimorphic characters exhibited both higher mutational robustness and higher evolvability. Decomposition of the results revealed that linkage disequilibrium within sex and linkage disequilibrium between sexes, two of the three primary components of additive genetic variance and evolvability in quantitative genetics models, contributed to the differences in evolvability between sexually dimorphic and monomorphic populations. These results indicate that producing two pleiotropically linked characters did not constrain either the production of a robust phenotype or adaptive potential. Instead, the genetic system evolved to maximize both quantities.  相似文献   

15.
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

16.
By physically modifying the abiotic environment, ecosystem engineers can have dramatic effects on the distribution and abundance of species in a community. However, ecosystem engineering can also change the selective environment and evolutionary dynamics of affected species, although this remains relatively understudied. Here, we examine the potential for an ecosystem engineer – oak trees – to affect the evolutionary dynamics of the herbaceous, understory annual, Impatiens capensis , through leaf litter deposition. Using a quantitative genetic experimental approach, we found that: (i) the presence of leaf litter significantly affected a suite of germination, growth and phenological traits in I. capensis ; (ii) I. capensis does not exhibit performance trade-offs across litter and bare soil environments in the form of negative across-environment genetic correlations; (iii) the presence or absence of leaf litter significantly alters the pattern of natural selection germination timing and hypocotyl length; and (iv) the frequency of leaf litter environments can dramatically change which combinations of hypocotyl length lead to highest mean fitness across both bare soil and leaf litter environments. More generally, our results demonstrate the potential for ecosystem engineers to alter both the ecological and the evolutionary dynamics of the species they affect.  相似文献   

17.
Species inhabit complex environments and respond to selection imposed by numerous abiotic and biotic conditions that vary in both space and time. Environmental heterogeneity strongly influences trait evolution and patterns of adaptive population differentiation. For example, heterogeneity can favor local adaptation, or can promote the evolution of plastic genotypes that alter their phenotypes based on the conditions they encounter. Different abiotic and biotic agents of selection can act synergistically to either accelerate or constrain trait evolution. The environmental context has profound effects on quantitative genetic parameters. For instance, heritabilities measured in controlled conditions often exceed those measured in the field; thus, laboratory experiments could overestimate the potential for a population to respond to selection. Nevertheless, most studies of the genetic basis of ecologically relevant traits are conducted in simplified laboratory environments, which do not reflect the complexity of nature. Here, we advocate for manipulative field experiments in the native ranges of plant species that differ in mating system, life-history strategy and growth form. Field studies are vital to evaluate the roles of disparate agents of selection, to elucidate the targets of selection and to develop a nuanced perspective on the evolution of quantitative traits. Quantitative genetics field studies will also shed light on the potential for natural populations to adapt to novel climates in highly fragmented landscapes. Drawing from our experience with the ecological model system Boechera (Brassicaceae), we discuss advancements possible through dedicated field studies, highlight future research directions and examine the challenges associated with field studies.  相似文献   

18.
The genetic variability underlying many morphological and stress resistance traits may largely depend on the effects of genetic drift balanced by polygenic mutation. This model of adaptive potential has played a central role in the minimum viable population size concept and has been used to predict the effective population size necessary to prevent extinction within changing environments. However, there have been few long-term experimental studies of adaptive potential within isolated populations, and no study has thus far provided an experimental test of the drift-mutation model of quantitative genetic variation. Using the sternopleural bristle number of Drosophila melanogaster as a model quantitative trait, we performed repeated measurements of adaptive potential on 15 replicate populations of two and 10 male-female pairs over 30 and 77 generations, respectively. Declines in adaptive potential were analyzed by comparing observed and expected changes in realized heritability over time. The only significant model deviation occurred immediately after bottlenecks of two pairs, in which greater than expected declines in realized heritability were observed. This result suggests that changes in allelic diversity during bottleneck events may be as important as changes in heterozygosity in determining adaptive potential. Drift-mutation model expectations were otherwise realized over all generations. Our results validate the use of the drift-mutation model as a tool for understanding the dynamics of adaptive potential for peripheral fitness characters, but suggest caution in applying this model to recently bottlenecked populations.  相似文献   

19.
Plant–animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician's standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist's standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short‐term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve.  相似文献   

20.
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria–ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号