首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel strategy in cancer therapy is the induction of mitotic cell death by the pharmacological abrogation of cell cycle checkpoints. UCN-01 is such a compound that overrides the G2 cell cycle arrest induced by DNA damage and forces cells into a deleterious mitosis. The molecular pathways leading to mitotic cell death are largely unknown although recent evidence indicates that mitotic cell death represents a special case of apoptosis. Here, we demonstrate that the mitotic spindle checkpoint is activated upon chemotherapeutic treatment with topoisomerase II poisons and UCN-01. Cells that are forced to enter mitosis in the presence of topoisomerase inhibition arrest transiently in a prometaphase like state. By using a novel pharmacological inhibitor of the spindle checkpoint and spindle checkpoint-deficient cells we show that the spindle checkpoint function is required for the mitotic arrest and, most importantly, for efficient induction of mitotic cell death. Thus, our results demonstrate that the mitotic spindle checkpoint is an important determinant for the outcome of a chemotherapy based on the induction of mitotic cell death. Its frequent inactivation in human cancer might contribute to the observed resistance of tumor cells to these chemotherapeutic drugs.  相似文献   

2.
Antimitotic spindle poisons are among the most important chemotherapeutic agents available. However, precocious mitotic exit by mitotic slippage limits the cytotoxicity of spindle poisons. The MAD2-binding protein p31(comet) is implicated in silencing the spindle assembly checkpoint after all kinetochores are attached to spindles. In this study, we report that the levels of p31(comet) and MAD2 in different cell lines are closely linked with susceptibility to mitotic slippage. Down-regulation of p31(comet) increased the sensitivity of multiple cancer cell lines to spindle poisons, including nocodazole, vincristine, and Taxol. In the absence of p31(comet), lower concentrations of spindle poisons were required to induce mitotic block. The delay in checkpoint silencing was induced by an accumulation of mitotic checkpoint complexes. The increase in the duration of mitotic block after p31(comet) depletion resulted in a dramatic increase in mitotic cell death upon challenge with spindle poisons. Significantly, cells that are normally prone to mitotic slippage and resistant to spindle disruption-mediated mitotic death were also sensitized after p31(comet) depletion. These results highlight the importance of p31(comet) in checkpoint silencing and its potential as a target for antimitotic therapies.  相似文献   

3.
The role of p53 in modifying sensitivity to cytotoxic drugs has been commonly studied by creating transfection pairs of wt p53 parental cells and altered p53 daughter cells, or vice versa. Authors inevitably tended to extrapolate and generalize their experimental observations, and conflicting reports have been more the rule than the exception. We have performed a meta-analysis of 356 independent studies. Average changes of drug sensitivity after a change of p53 status were observed. E6 transfection predominantly induces sensitization to cytotoxic drugs, whereas p53-/- knockout cells are more drug-resistant than their normal p53+/+ counterpart. Unexpectedly, transfection with a mutated p53 does not change much the drug sensitivity of most wt p53 cancer lines, with the notable exception of A2780, a predominant cell line in the studies analyzed (A2780 cells show increased resistance after transfection with a mutated p53). Rather interestingly, mitotic spindle poisons acted differently from other classes of cytotoxic drugs. A crucial indication of our findings is that the role of p53 alone in determining sensitivity/resistance to cytotoxic drugs is limited: the individual molecular pathology and differentiation of a given cancer line prevail over any average trend, and are causal to a broad spreading of the data. We also identify major "confounding factors", alias independent categorical variables, capable of affecting the average outcome.  相似文献   

4.
药(毒)物对尸食性蝇类生长发育影响的研究进展   总被引:1,自引:0,他引:1  
吕宙  李学博  莫耀南 《昆虫学报》2010,53(4):464-469
药(毒)物对尸食性蝇类生长发育影响是法医昆虫毒理学领域里一个十分重要的研究方向,其研究结果可对与药(毒)物相关死亡案件的死亡时间作出修正。随着近年来全球毒品及药物滥用情况的日趋严重,其所导致的死亡案件也越来越多。这类案件常常需要应用尸食性蝇类生长发育历期来推算死后经历时间(postmortem interval, PMI)。为了阐明该领域的研究进展以及未来研究的焦点和难点,本文在阐述法医昆虫毒理学概念和特点的基础上,按照不同的药(毒)物分类,对近年来药(毒)物对尸食性蝇类生长发育影响在国内外的研究进展进行了综述。研究表明,某些药(毒)物对尸食性蝇类生长发育具有一定的影响,且这种影响存在种属差异。目前,该领域的研究尚限于宏观现象观察阶段,其研究范围在不断拓宽,既有的研究也在进一步深化,但还有许多问题有待进一步探讨。  相似文献   

5.
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.  相似文献   

6.
Spindle poisons represent an important class of anticancer drugs that act by interfering with microtubule polymerization and dynamics and thereby induce mitotic checkpoints and apoptosis. Here we show that mammalian SNM1 functions in an early mitotic stress checkpoint that is distinct from the well-characterized spindle checkpoint that regulates the metaphase-to-anaphase transition. Specifically, we found that compared to wild-type cells, Snm1-deficient mouse embryonic fibroblasts exposed to spindle poisons exhibited elevated levels of micronucleus formation, decreased mitotic delay, a failure to arrest in mitosis prior to chromosome condensation, supernumerary centrosomes, and decreased viability. In addition, we show that both Snm1 and 53BP1, previously shown to interact, coimmunoprecipitate with components of the anaphase-promoting complex (APC)/cyclosome. These findings suggest that Snm1 is a component of a mitotic stress checkpoint that negatively targets the APC prior to chromosome condensation.  相似文献   

7.

Background

The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons.

Results

Here we describe mitotic slippage in yeast bub2?? mutant cells that are defective in the repression of precocious telophase onset (mitotic exit). Precocious activation of anaphase promoting complex/cyclosome (APC/C)-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation), in addition to telophase onset (mitotic exit), during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments.

Conclusions

The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase) causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.  相似文献   

8.
Nuclear foci containing the promyelocytic leukemia protein (PML bodies), which occur in most cells, play a role in tumor suppression. Here, we demonstrate that CHFR, a mitotic checkpoint protein frequently inactivated in human cancers, is a dynamic component of PML bodies. Intermolecular fluorescence resonance energy transfer analysis identified a distinct fraction of CHFR that interacts with PML in living cells. This interaction modulates the nuclear distribution and mobility of CHFR. A trans-dominant mutant of CHFR that inhibits checkpoint function also prevents colocalization and interaction with PML. Conversely, the distribution and mobility of CHFR are perturbed in PML(-/-) cells, accompanied by aberrations in mitotic entry and the response to spindle depolymerization. Thus, PML bodies control the distribution, dynamics and function of CHFR. Our findings implicate the interaction between these tumor suppressors in a checkpoint response to microtubule poisons, an important class of anticancer drugs.  相似文献   

9.
Filamin-A, also called Actin Binding Protein-280, is not only an essential component of the cytoskeleton networks, but also serves as the scaffold in various signaling networks. It has been shown that filamin-A facilitates DNA repair and filamin-A proficient cells are more resistant to ionizing radiation, bleomycin, and cisplatin. In this study, we assessed the role of filamin-A in modulating cancer cell sensitivity to Topo II poisons, including etoposide and doxorubicin. Intriguingly, we found that cells with filamin-A expression are more sensitive to Topo II poisons than those with defective filamin-A, and filamin-A proficient xenograft melanomas have better response to etoposide treatment than the filamin-A deficient tumors. This is associated with more potent induction of DNA double strand breaks (DSBs) by Topo II poisons in filamin-A proficient cells than the deficient cells. Although the expression of filamin-A enables cells a slightly stronger capability to repair DSB, the net outcome is that filamin-A proficient cells bear more DSBs due to the significantly enhanced DSB induction by Topo II poisons in these cells. We further found that filamin-A proficient cells have increased drug influx and decreased drug efflux, suggesting that filamin-A modulates the intra-cellular drug kinetics of Topo II poisons to facilitate the generation of DSB after Topo II poison exposure. These data suggest a novel function of filamin-A in regulating the pharmacokinetics of Topo II poisons, and that the status of filamin-A may be used as a prognostic marker for Topo II poisons based cancer treatments.  相似文献   

10.
We have previously presented a model for the assembly and disassembly of mitotic spindle microtubules (MTs) (Pickett-Heaps et al., 1986). In this paper, we describe the thermodynamics of such spindle MT assembly and present equations to describe the polymerization kinetics of different classes of spindle MTs. These equations are used to predict, in terms of kinetics parameters, the magnitude of forces extant on spindle MTs and to define the critical force needed to halt MT assembly. We calculate several of these forces for a hypothetical model cell; our predicted value for the force generated along kinetochore fibers is in close agreement with measured values taken from living cells. The model and its implications are discussed with reference to other recent models of spindle and MT dynamics.  相似文献   

11.
Cancer is a major cause of mortality in developed countries, following only cardiovascular diseases. Death of cancerous cells can be achieved by stopping mitosis and the antimitotic class of drugs formed by the spindle poisons can be used for this purpose. Their role is to disorganize the mitotic spindle by targeting its main constituent, the microtubules, themselves made of heterodimers of α and β-tubulin. They disrupt the dynamics of the microtubules either by stabilizing them, as do paclitaxel or epothilones, or destabilizing them, as do colchicine. The binding site of colchicine seems to lie between the two units of the tubulin dimer. Here, we report on the characterization of this site by the docking of a series of reference compounds, and the subsequent docking of ligands prepared in our laboratory.  相似文献   

12.
Cancer is a major cause of mortality in developed countries, following only cardiovascular diseases. Death of cancerous cells can be achieved by stopping mitosis and the antimitotic class of drugs formed by the spindle poisons can be used for this purpose. Their role is to disorganize the mitotic spindle by targeting its main constituent, the microtubules, themselves made of heterodimers of alpha and beta-tubulin. They disrupt the dynamics of the microtubules either by stabilizing them, as do paclitaxel or epothilones, or destabilizing them, as do colchicine. The binding site of colchicine seems to lie between the two units of the tubulin dimer. Here, we report on the characterization of this site by the docking of a series of reference compounds, and the subsequent docking of ligands prepared in our laboratory.  相似文献   

13.
Inhibition of mitosis by antimitotic drugs is thought to occur by destruction of microtubules, causing cells to arrest through the action of one or more mitotic checkpoints. We have patterned experiments in the yeast Saccharomyces cerevisiae after recent studies in mammalian cells that demonstrate the effectiveness of antimitotic drugs at concentrations that maintain spindle structure. We show that low concentrations of nocodazole delay cell division under the control of the previously identified mitotic checkpoint genes BUB1, BUB3, MAD1, and MAD2 and independently of BUB2. The same genes mediate the cell cycle delay induced in ctf13 mutants, limited for an essential kinetochore component. Our data suggest that a low concentration of nocodazole induces a cell cycle delay through checkpoint control that is sensitive to impaired kinetochore function. The BUB2 gene may be part of a separate checkpoint that responds to abnormal spindle structure.  相似文献   

14.
The spindle assembly checkpoint (SAC) is a mechanism that prevents premature chromosome segregation in anaphase before all chromosomes are correctly attached to the mitotic spindle. Errors in chromosome segregation lead to aneuploidy, which may be causally involved in tumorgenesis. Kinetochore complexes are the structural components of the SAC, which are tightly regulated by various mechanisms including phosphorylation and ubiquitin-dependent proteolysis. Recent studies shed new light on the regulatory pathways of the ubiquitin proteasome system involved in SAC signaling. Here we present evidence that a Cul3-based E3 ubiquitin-ligase is required to maintain SAC signaling in human cells. Inactivation of the Cul3/KLHL9/KLHL13 ligase leads to premature degradation of Cyclin B and exit from the mitotic state in the presence of microtubule poisons. We discuss possible mechanisms how Cul3 may be required to maintain SAC activity by ubiquitination of the chromosomal passenger protein Aurora B.  相似文献   

15.
16.
Cell cycle deregulation is a common feature of human cancer. Tumor cells accumulate mutations that result in unscheduled proliferation, genomic instability and chromosomal instability. Several therapeutic strategies have been proposed for targeting the cell division cycle in cancer. Whereas inhibiting the initial phases of the cell cycle is likely to generate viable quiescent cells, targeting mitosis offers several possibilities for killing cancer cells. Microtubule poisons have proved efficacy in the clinic against a broad range of malignancies, and novel targeted strategies are now evaluating the inhibition of critical activities, such as cyclin-dependent kinase 1, Aurora or Polo kinases or spindle kinesins. Abrogation of the mitotic checkpoint or targeting the energetic or proteotoxic stress of aneuploid or chromosomally instable cells may also provide further benefits by inducing lethal levels of instability. Although cancer cells may display different responses to these treatments, recent data suggest that targeting mitotic exit by inhibiting the anaphase-promoting complex generates metaphase cells that invariably die in mitosis. As the efficacy of cell-cycle targeting approaches has been limited so far, further understanding of the molecular pathways modulating mitotic cell death will be required to move forward these new proposals to the clinic.  相似文献   

17.
A molecular pathway homologous to the S. cerevisiae mitotic exit network (MEN) and S. pombe septation initiation network has recently been described in higher eukaryotes and involves the tumor suppressor kinase LATS1 and its subunit MOB1A. The yeast MEN/septation initiation network pathways are regulated by the ubiquitin ligase defective in mitotic arrest 1 (Dma1p), a checkpoint protein that helps maintain prometaphase arrest when cells are exposed to microtubule poisons. We identified here the RING domain protein ring finger 8 (RNF8) as the human orthologue of the yeast protein Dma1p. Like its yeast counterparts, human DMA1/RNF8 localized at the midbody and its depletion by siRNA compromised mitotic arrest of nocodazole-treated cells in a manner dependent on the MEN. Depletion of MAD2, a spindle checkpoint protein, also compromised mitotic arrest, but in a MEN-independent manner. Thus, two distinct checkpoint pathways maintain mitotic arrest in cells exposed to microtubule poisons.  相似文献   

18.
The spindle assembly checkpoint ensures accurate chromosome segregation by delaying anaphase initiation until all chromosomes are properly attached to the mitotic spindle. Here, we show that the previously reported c-Jun amino-terminal kinase (JNK) inhibitor SP600125 effectively disrupts spindle checkpoint function in a JNK-independent fashion. SP600125 potently inhibits activity of the mitotic checkpoint kinase monopolar spindle 1 (Mps1) in vitro and triggers efficient progression through a mitotic arrest imposed by spindle poisons. Importantly, expression of an Mps1 mutant protein refractory to SP600125-mediated inhibition restores spindle checkpoint function in the presence of SP600125, showing that its mitotic phenotype is induced by Mps1 inhibition in vivo. Remarkably, primary human cells are largely resistant to the checkpoint-inactivating action of SP600125, suggesting the existence of Mps1-independent checkpoint pathways that are compromised in tumour cells.  相似文献   

19.
When the spindle assembly checkpoint (SAC) cannot be satisfied, cells exit mitosis via mitotic slippage. In microtubule (MT) poisons, slippage requires cyclin B proteolysis, and it appears to be accelerated in drug concentrations that allow some MT assembly. To determine if MTs accelerate slippage, we followed mitosis in human RPE-1 cells exposed to various spindle poisons. At 37°C, the duration of mitosis in nocodazole, colcemid, or vinblastine concentrations that inhibit MT assembly varied from 20 to 30 h, revealing that different MT poisons differentially depress the cyclin B destruction rate during slippage. The duration of mitosis in Eg5 inhibitors, which induce monopolar spindles without disrupting MT dynamics, was the same as in cells lacking MTs. Thus, in the presence of numerous unattached kinetochores, MTs do not accelerate slippage. Finally, compared with cells lacking MTs, exit from mitosis is accelerated over a range of spindle poison concentrations that allow MT assembly because the SAC becomes satisfied on abnormal spindles and not because slippage is accelerated.  相似文献   

20.
Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号