首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite significant advances in treatment, cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in developed and developing countries. Judicious monitoring of common risk factors has been unable to control this global epidemic, necessitating novel biomarkers for improved screening and earlier disease detection and management. Although numerous plasma proteins have been associated with CVD, only a few of these potential biomarkers have been validated for clinical use. Here we review the quantitative proteomic methods used to verify and validate new biomarker candidates in human plasma. These methods center on a bottom-up approach involving multiple or selected reaction monitoring, for targeted detection, with stable isotope-labeled standards, for peptide normalization. Also included are a discussion of future strategies for improved CVD protein biomarker verification and validation, recommendations for method translation to the clinic, and future projections for protein biomarker research.  相似文献   

2.
The low molecular weight plasma proteome and its biological relevance are not well defined; therefore, experiments were conducted to directly sequence and identify peptides observed in plasma and serum protein profiles. Protein fractionation, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) profiling, and liquid-chromatography coupled to MALDI tandem mass spectrometry (MS/MS) sequencing were used to analyze the low molecular weight proteome of heparinized plasma. Four fractionation techniques using functionally derivatized 96-well plates were used to extract peptides from plasma. Tandem TOF was successful for identifying peptides up to m/z 5500 with no prior knowledge of the sequence and was also used to verify the sequence assignments for larger ion signals. The peptides (n>250) sequenced in these profiles came from a surprisingly small number of proteins (n approximately 20), which were all common to plasma, including fibrinogen, complement components, antiproteases, and carrier proteins. The cleavage patterns were consistent with those of known plasma proteases, including initial cleavages by thrombin, plasmin and complement proteins, followed by aminopeptidase and carboxypeptidase activity. On the basis of these data, we discuss limitations in biomarker discovery in the low molecular weight plasma or serum proteome using crude fractionation coupled to MALDI-MS profiling.  相似文献   

3.
Mass Spectrometry-based proteomics is now considered a relatively established strategy for protein analysis, ranging from global expression profiling to the identification of protein complexes and specific post-translational modifications. Recently, Selected Reaction Monitoring Mass Spectrometry (SRM-MS) has become increasingly popular in proteome research for the targeted quantification of proteins and post-translational modifications. Using triple quadrupole instrumentation (QqQ), specific analyte molecules are targeted in a data-directed mode. Used routinely for the quantitative analysis of small molecular compounds for at least three decades, the technology is now experiencing broadened application in the proteomics community. In the current review, we will provide a detailed summary of current developments in targeted proteomics, including some of the recent applications to biological research and biomarker discovery.  相似文献   

4.
There is an often unspoken truth behind the course of scientific investigation that involves not what is necessarily academically worthy of study, but rather what is scientifically worthy in the eyes of funding agencies. The perception of worthy research is, as cost is driven in the simplest sense in economics, often driven by demand. Presently, the demand for novel diagnostic and therapeutic protein biomarkers that possess high sensitivity and specificity is placing major impact on the field of proteomics. The focal discovery technology that is being relied on is mass spectrometry (MS), whereas the challenge of biomarker discovery often lies not in the application of MS but in the underlying proteome sampling and bioinformatic processing strategies. Although biomarker discovery research has been historically technology-driven, it is clear from the meager success in generating validated biomarkers that increasing attention must be placed at the pre-analytic stage, such as sample retrieval and preparation. As diseases vary, so do the combinations of sampling and sample analyses necessary to discover novel biomarkers. In this review, we highlight different strategies used toward biomarker discovery and discuss them in terms of their reliance on technology and methodology.  相似文献   

5.
A high-throughput software pipeline for analyzing high-performance mass spectral data sets has been developed to facilitate rapid and accurate biomarker determination. The software exploits the mass precision and resolution of high-performance instrumentation, bypasses peak-finding steps, and instead uses discrete m/z data points to identify putative biomarkers. The technique is insensitive to peak shape, and works on overlapping and non-Gaussian peaks which can confound peak-finding algorithms. Methods are presented to assess data set quality and the suitability of groups of m/z values that map to peaks as potential biomarkers. The algorithm is demonstrated with serum mass spectra from patients with and without ovarian cancer. Biomarker candidates are identified and ranked by their ability to discriminate between cancer and noncancer conditions. Their discriminating power is tested by classifying unknowns using a simple distance calculation, and a sensitivity of 95.6% and a specificity of 97.1% are obtained. In contrast, the sensitivity of the ovarian cancer blood marker CA125 is approximately 50% for stage I/II and approximately 80% for stage III/IV cancers. While the generalizability of these markers is currently unknown, we have demonstrated the ability of our analytical package to extract biomarker candidates from high-performance mass spectral data.  相似文献   

6.

Background  

Robust biomarkers are needed to improve microbial identification and diagnostics. Proteomics methods based on mass spectrometry can be used for the discovery of novel biomarkers through their high sensitivity and specificity. However, there has been a lack of a coherent pipeline connecting biomarker discovery with established approaches for evaluation and validation. We propose such a pipeline that uses in silico methods for refined biomarker discovery and confirmation.  相似文献   

7.
Biomarker discovery and validation involves the consideration of many issues and challenges in order to be effectively used for translation from bench to bedside. Imaging mass spectrometry (IMS) is a new technology to assess spatial molecular arrangements in tissue sections, going far beyond microscopy in providing hundreds of different molecular images from a single scan without the need of target-specific reagents. The possibility to correlate distribution maps of multiple analytes with histological and clinical features makes it an ideal tool to discover diagnostic and prognostic markers of diseases. Some recently published studies that show the usefulness and advantages of this technology in the field of cancer research are highlighted.  相似文献   

8.
Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

9.
The utility of differentially expressed proteins discovered and identified in an earlier study (DeSouza, L., Diehl, G., Rodrigues, M. J., Guo, J., Romaschin, A. D., Colgan, T. J., and Siu, K. W. M. (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cleavable ICAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 4, 377-386) to discriminate malignant and benign endometrial tissue samples was verified in a 40-sample iTRAQ (isobaric tags for relative and absolute quantitation) labeling study involving normal proliferative and secretory samples and Types I and II endometrial cancer samples. None of these proteins had the sensitivity and specificity to be used individually to discriminate between normal and cancer samples. However, a panel of pyruvate kinase, chaperonin 10, and alpha1-antitrypsin achieved the best results with a sensitivity, specificity, predictive value, and positive predictive value of 0.95 each in a logistic regression analysis. In addition, three new potential markers were discovered, whereas two other proteins showed promising trends but were not detected in sufficient numbers of samples to permit statistical validation. Differential expressions of some of these candidate biomarkers were independently verified using immunohistochemistry.  相似文献   

10.

Background  

Post-translational modifications and genetic variations give rise to protein variants that significantly increase the complexity of the human proteome. Modified proteins also play an important role in biological processes. While sandwich immunoassays are routinely used to determine protein concentrations, they are oblivious to protein variants that may serve as biomarkers with better sensitivity and specificity than their wild-type proteins. Mass spectrometry, coupled to immunoaffinity separations, can provide an efficient mean for simultaneous detection and quantification of protein variants.  相似文献   

11.
In the last several years, significant progress has been made in the development of microfluidic-based analytical technologies for proteomic and drug discovery applications. Chip-based nanoelectrospray coupled to a mass spectrometer detector is one of the recently developed analytical microscale technologies. This technology offers unique advantages for automated nanoelectrospray including reduced sample consumption, improved detection sensitivity and enhanced data quality for proteomic studies. This review presents an overview and introduction of recent developments in chip devices coupled to electrospray mass spectrometers including the development of the automated nanoelectrospray ionization chip device for protein characterization. Applications using automated chip-based nanoelectrospray ionization technology in proteomic and bioanalytical studies are also extensively reviewed in the fields of high-throughput protein identification, protein post-translational modification studies, top-down proteomics, biomarker screening by pattern recognition, noncovalent protein–ligand binding for drug discovery and lipid analysis. Additionally, future trends in chip-based nanoelectrospray technology are discussed.  相似文献   

12.
Informatics for protein identification by mass spectrometry   总被引:3,自引:0,他引:3  
High throughput protein analysis (i.e., proteomics) first became possible when sensitive peptide mass mapping techniques were developed, thereby allowing for the possibility of identifying and cataloging most 2D gel electrophoresis spots. Shortly thereafter a few groups pioneered the idea of identifying proteins by using peptide tandem mass spectra to search protein sequence databases. Hence, it became possible to identify proteins from very complex mixtures. One drawback to these latter techniques is that it is not entirely straightforward to make matches using tandem mass spectra of peptides that are modified or have sequences that differ slightly from what is present in the sequence database that is being searched. This has been part of the motivation behind automated de novo sequencing programs that attempt to derive a peptide sequence regardless of its presence in a sequence database. The sequence candidates thus generated are then subjected to homology-based database search programs (e.g., BLAST or FASTA). These homology search programs, however, were not developed with mass spectrometry in mind, and it became necessary to make minor modifications such that mass spectrometric ambiguities can be taken into account when comparing query and database sequences. Finally, this review will discuss the important issue of validating protein identifications. All of the search programs will produce a top ranked answer; however, only the credulous are willing to accept them carte blanche.  相似文献   

13.
In the last several years, significant progress has been made in the development of microfluidic-based analytical technologies for proteomic and drug discovery applications. Chip-based nanoelectrospray coupled to a mass spectrometer detector is one of the recently developed analytical microscale technologies. This technology offers unique advantages for automated nanoelectrospray including reduced sample consumption, improved detection sensitivity and enhanced data quality for proteomic studies. This review presents an overview and introduction of recent developments in chip devices coupled to electrospray mass spectrometers including the development of the automated nanoelectrospray ionization chip device for protein characterization. Applications using automated chip-based nanoelectrospray ionization technology in proteomic and bioanalytical studies are also extensively reviewed in the fields of high-throughput protein identification, protein post-translational modification studies, top-down proteomics, biomarker screening by pattern recognition, noncovalent protein-ligand binding for drug discovery and lipid analysis. Additionally, future trends in chip-based nanoelectrospray technology are discussed.  相似文献   

14.
Due to the enormous complexity of proteomes which constitute the entirety of protein species expressed by a certain cell or tissue, proteome-wide studies performed in discovery mode are still limited in their ability to reproducibly identify and quantify all proteins present in complex biological samples. Therefore, the targeted analysis of informative subsets of the proteome has been beneficial to generate reproducible data sets across multiple samples. Here we review the repertoire of antibody- and mass spectrometry (MS) -based analytical tools which is currently available for the directed analysis of predefined sets of proteins. The topics of emphasis for this review are Selected Reaction Monitoring (SRM) mass spectrometry, emerging tools to control error rates in targeted proteomic experiments, and some representative examples of applications. The ability to cost- and time-efficiently generate specific and quantitative assays for large numbers of proteins and posttranslational modifications has the potential to greatly expand the range of targeted proteomic coverage in biological studies. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

15.
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   

16.
The direct analysis of tissue sections by MALDI mass spectrometry holds tremendous potential for biomarker discovery. This technology routinely allows many hundreds of proteins to be detected over a mass range of approximately 2000-70 000 Da while maintaining the spatial localization of the proteins detected. This technology has been applied to a wide range of tissue samples, including human glioma tissue and human lung tumor tissue. In many cases, biostatistical analyses of the resulting protein profiles revealed patterns that correlated with disease state and/or clinical endpoints. This work serves as a review of recent applications and summarizes the current state of technology.  相似文献   

17.
Proteins control and mediate most of the biological activities in the cell. In most cases, proteins either interact with regulatory proteins or function in large molecular assemblies to carryout biological processes. Understanding the functions of individual proteins requires the identification of these interacting proteins. With its speed and sensitivity, mass spectrometry has become the dominant method for identifying components of protein complexes. This article reviews and discusses various approaches to purify protein complexes and analyze the proteins using mass spectrometry. As examples, methods to isolate and analyze protein complexes responsible for the translation of messenger RNAs into polypeptides are described.  相似文献   

18.
Recent achievements in genomics have created an infrastructure of biological information. The enormous success of genomics promptly induced a subsequent explosion in proteomics technology, the emerging science for systematic study of proteins in complexes, organelles, and cells. Proteomics is developing powerful technologies to identify proteins, to map proteomes in cells, to quantify the differential expression of proteins under different states, and to study aspects of protein-protein interaction. The dynamic nature of protein expression, protein interactions, and protein modifications requires measurement as a function of time and cellular state. These types of studies require many measurements and thus high throughput protein identification is essential. This review will discuss aspects of mass spectrometry with emphasis on methods and applications for large-scale protein identification, a fundamental tool for proteomics.  相似文献   

19.
高维蛋白质波谱癌症数据分析,一直面临着高维数据的困扰。针对高维蛋白质波谱癌症数据在降维过程中的问题,提出基于小波分析技术和主成分分析技术的高维蛋白质波谱癌症数据特征提取的方法,并在特征提取之后,使用支持向量机进行分类。对8-7-02数据集进行2层小波分解时,分别使用db1、db3、db4、db6、db8、db10、haar小波基,并使用支持向量机进行分类,正确率分别达到98.18%、98.35%、98.04%、98.36%、97.89%、97.96%、98.20%。在进一步提高分类识别正确率的同时,提高了时间率。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号