首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have indicated that insulin activates endothelial nitric-oxide synthase (eNOS) by protein kinase B (PKB)-mediated phosphorylation at Ser1177 in endothelial cells. Because hyperglycemia contributes to endothelial dysfunction and decreased NO availability in types 1 and 2 diabetes mellitus, we have studied the effects of high glucose (25 mM, 48 h) on insulin signaling pathways that regulate NO production in human aortic endothelial cells. High glucose inhibited insulin-stimulated NO synthesis but was without effect on NO synthesis stimulated by increasing intracellular Ca2+ concentration. This was accompanied by reduced expression of IRS-2 and attenuated insulin-stimulated recruitment of PI3K to IRS-1 and IRS-2, yet insulin-stimulated PKB activity and phosphorylation of eNOS at Ser1177 were unaffected. Inhibition of insulin-stimulated NO synthesis by high glucose was unaffected by an inhibitor of PKC. Furthermore, high glucose down-regulated the expression of CAP and Cbl, and insulin-stimulated Cbl phosphorylation, components of an insulin signaling cascade previously characterized in adipocytes. These data suggest that high glucose specifically inhibits insulin-stimulated NO synthesis and down-regulates some aspects of insulin signaling, including the CAP-Cbl signaling pathway, yet this is not a result of reduced PKB-mediated eNOS phosphorylation at Ser1177. Therefore, we propose that phosphorylation of eNOS at Ser1177 is not sufficient to stimulate NO production in cells cultured at 25 mM glucose.  相似文献   

2.
Angiotensin (ANG) II exerts a negative modulation on insulin signal transduction that might be involved in the pathogenesis of hypertension and insulin resistance. ANG-(1-7), an endogenous heptapeptide hormone formed by cleavage of ANG I and ANG II, counteracts many actions of ANG II. In the current study, we have explored the role of ANG-(1-7) in the signaling crosstalk that exists between ANG II and insulin. We demonstrated that ANG-(1-7) stimulates the phosphorylation of Janus kinase 2 (JAK2) and insulin receptor substrate (IRS)-1 in rat heart in vivo. This stimulating effect was blocked by administration of the selective ANG type 1 (AT(1)) receptor blocker losartan. In contrast to ANG II, ANG-(1-7) stimulated cardiac Akt phosphorylation, and this stimulation was blunted in presence of the receptor Mas antagonist A-779 or the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. The specific JAK2 inhibitor AG-490 blocked ANG-(1-7)-induced JAK2 and IRS-1 phosphorylation but had no effect on ANG-(1-7)-induced phosphorylation of Akt, indicating that activation of cardiac Akt by ANG-(1-7) appears not to involve the recruitment of JAK2 but proceeds through the receptor Mas and involves PI3K. Acute in vivo insulin-induced cardiac Akt phosphorylation was inhibited by ANG II. Interestingly, coadministration of insulin with an equimolar mixture of ANG II and ANG-(1-7) reverted this inhibitory effect. On the basis of our present results, we postulate that ANG-(1-7) could be a positive physiological contributor to the actions of insulin in heart and that the balance between ANG II and ANG-(1-7) could be relevant for the association among insulin resistance, hypertension, and cardiovascular disease.  相似文献   

3.
Ghrelin is an orexigenic peptide hormone secreted by the stomach. In patients with metabolic syndrome and low ghrelin levels, intra-arterial ghrelin administration acutely improves their endothelial dysfunction. Therefore, we hypothesized that ghrelin activates endothelial nitric oxide synthase (eNOS) in vascular endothelium, resulting in increased production of nitric oxide (NO) using signaling pathways shared in common with the insulin receptor. Similar to insulin, ghrelin acutely stimulated increased production of NO in bovine aortic endothelial cells (BAEC) in primary culture (assessed using NO-specific fluorescent dye 4,5-diaminofluorescein) in a time- and dose-dependent manner. Production of NO in response to ghrelin (100 nM, 10 min) in human aortic endothelial cells was blocked by pretreatment of cells with NG-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor], or (D-Lys3)-GHRP-6 (selective antagonist of ghrelin receptor GHSR-1a), as well as by knockdown of GHSR-1a using small-interfering (si) RNA (but not by mitogen/extracellular signal-regulated kinase inhibitor PD-98059). Moreover, ghrelin stimulated increased phosphorylation of Akt (Ser473) and eNOS (Akt phosphorylation site Ser1179) that was inhibitable by knockdown of GHSR-1a using siRNA or by pretreatment of cells with wortmannin but not with PD-98059. Ghrelin also stimulated phosphorylation of mitogen-activated protein (MAP) kinase in BAEC. However, unlike insulin, ghrelin did not stimulate MAP kinase-dependent secretion of the vasoconstrictor endothelin-1 from BAEC. We conclude that ghrelin has novel vascular actions to acutely stimulate production of NO in endothelium using a signaling pathway that involves GHSR-1a, PI 3-kinase, Akt, and eNOS. Our findings may be relevant to developing novel therapeutic strategies to treat diabetes and related diseases characterized by reciprocal relationships between endothelial dysfunction and insulin resistance.  相似文献   

4.
Genistein is an isoflavone phytoestrogen with biological activities in management of metabolic disorders. This study aims to evaluate the regulation of insulin action by genistein in the endothelium. Genistein inhibited insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and attenuated downstream Akt and endothelial nitric oxide synthase (eNOS) phosphorylation, leading to a decreased nitric oxide (NO) production in endothelial cells. These results demonstrated its negative regulation of insulin action in the endothelium. Palmitate (PA) stimulation evoked inflammation and induced insulin resistance in endothelial cells. Genistein inhibited IKKβ and nuclear factor-кB (NF-кB) activation with down-regulation of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production and expression. Genistein inhibited inflammation-stimulated IRS-1 serine phosphorylation and restored insulin-mediated tyrosine phosphorylation. Genistein restored insulin-mediated Akt and eNOS phosphorylation, and then led to an increased NO production from endothelial cells, well demonstrating its positive regulation of insulin action under insulin-resistant conditions. Meanwhile, genistein effectively inhibited inflammation-enhanced mitogenic actions of insulin by down-regulation of endothelin-1 and vascular cell adhesion protein-1 overexpression. PA stimulation impaired insulin-mediated vessel dilation in rat aorta, while genistein effectively restored the lost vasodilation in a concentration-dependent manner (0.1, 1 and 10 μM). These results suggested that genistein inhibited inflammation and ameliorated endothelial dysfunction implicated in insulin resistance. Better understanding of genistein action in regulation of insulin sensitivity in the endothelium could be beneficial for its possible applications in controlling endothelial dysfunction associated with diabetes and insulin resistance.  相似文献   

5.
Fibroblast growth in the scar and surviving tissue is a key element of the remodeling post myocardial infarction. The regulation of fibroblast growth after acute myocardial infarction remains to be determined. Recently, Angiotensin II has been demonstrated to be a mitogen for neonatal cardiac fibroblasts. In this study adult rat cardiac fibroblasts were isolated from different regions of the infarcted rat heart and Angiotensin II effects examined. Adult Wistar-rats were sham operated or left coronary artery ligated. After 4 days, hearts were removed and fibroblasts from sham operated, infarct- and non-infarct regions of the left ventricle isolated. Radioligand binding studies were performed and cell number, cell area, total protein, and AT(1) receptor mRNA after stimulation determined. Radioligand binding studies demonstrated that myofibroblasts expressed a single class of high affinity Angiotensin II AT(1) receptors. Myofibroblasts from the infarct area revealed a lower maximal binding capacity, compared to sham operated myocardium. Conversely, myofibroblasts from the non-infarct area had a higher expression of Angiotensin II AT(1) receptor mRNA compared to sham operated myofibroblasts. Angiotensin II (1 microM, 48 h) increased cell-number in sham operated and non-infarct, but not in infarct myofibroblasts. Angiotensin II elevated total protein in sham operated, non-infarct, and infarct myofibroblasts. In addition, Angiotensin II increased cell area in sham operated and infarct myofibroblasts. These data demonstrate that Angiotensin II acted as a mitogen in sham operated and non-infarct myofibroblasts and stimulated hypertrophy in infarct myofibroblasts. These regional different effects of Angiotensin II might participate in the remodeling post myocardial infarction.  相似文献   

6.
Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.  相似文献   

7.
NO synthesis is a prerequisite for proper insulin sensitivity in insulin-targeted tissues; however, the molecular basis for this process remains unclear. Using a gain-of-function model of endothelial nitric-oxide synthase (eNOS)-transfected COS-7 cells, we have shown a critical role of NO in insulin responsiveness, as evidenced by an NO-dependent increase of tyrosine phosphorylation levels of the insulin receptor and its downstream effectors insulin receptor substrate-1 and PKB/AKT. We hypothesized that NO-induced inactivation of endogenous protein-tyrosine phosphatases (PTPs) would enhance insulin receptor-mediated signaling. To test this hypothesis, we devised a new method of the PTP labeling using a cysteine sulfhydryl-reacted probe. Under the acidic conditions employed in this study, the probe recognized the reduced and active forms but not the S-nitrosylated and inactive forms of endogenous PTPs. Our data suggest that phosphatases SHP-1, SHP-2, and PTP1B, but not TC-PTP, are likely S-nitrosylated at the active site cysteine residue concomitantly with a burst of NO production in signaling response to insulin stimulation. These results were further confirmed by phosphatase activity assays. We investigated further the role of NO as a regulator of insulin signaling by RNA interference that ablates endogenous eNOS expression in endothelial MS-1 cells. We have shown that eNOS-dependent NO production is essential for the activation of insulin signaling. Our findings demonstrate that NO mediates enhancement of insulin responsiveness via the inhibition of insulin receptor phosphatases.  相似文献   

8.
9.
Sphingosine 1-phosphate (SPP) binds to members of the endothelial differentiation gene family (EDG) of receptors and leads to diverse signaling events including cell survival, growth, migration and differentiation. However, the mechanisms of how SPP activates these proangiogenic pathways are poorly understood. Here we show that SPP signals through the EDG-1 receptor to the heterotrimeric G protein G(i), leading to activation of the serine/threonine kinase Akt and phosphorylation of the Akt substrate, endothelial nitric-oxide synthase (eNOS). Inhibition of G(i) signaling, and phosphoinositide 3-kinase (PI 3-kinase) activity resulted in a decrease in SPP-induced endothelial cell chemotaxis. SPP also stimulates eNOS phosphorylation and NO release and these effects are also attenuated by inhibition of G(i) signaling, PI 3-kinase, and Akt. However, inhibition of NO production did not influence SPP-induced chemotaxis but effectively blocked the chemotactic actions of vascular endothelial growth factor. Thus, SPP signals through G(i) and PI 3-kinase leading to Akt activation and eNOS phosphorylation.  相似文献   

10.
Zhao X  Li X  Trusa S  Olson SC 《Regulatory peptides》2005,132(1-3):113-122
We previously demonstrated that angiotensin II (Ang II) stimulates an increase in nitric oxide synthase (NOS) mRNA levels, eNOS protein expression and NO production via the type 2 (AT2) receptor, whereas signaling via the type 1 (AT1) receptor negatively regulates NO production in bovine pulmonary artery endothelial cells (BPAECs). In the present study, we investigated the components of the AT1 receptor-linked signaling pathway(s) that are involved in the downregulation of eNOS protein expression in BPAECs. Treatment of BPAECs with either AT1 receptor antagonists or an anti-AT1 receptor antibody induced eNOS protein expression. Furthermore, intracellular delivery of GP-Antagonist-2A, an inhibitor of Galphaq proteins, and treatment of BPAECs with U73122, a phosphatidylinositol-phospholipase C (PLC)-specific inhibitor, enhanced eNOS protein expression. Treatment of BPAECs with the cell-permeable calcium chelator, BAPTA/AM, increased eNOS protein expression at 8 h, while increasing intracellular calcium with either thapsigargin or A23187 prevented Ang II-induced eNOS protein expression. Phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, completely prevented Ang II-stimulated eNOS protein expression at 8 h, whereas depletion of PKC by long-term treatment with PMA, induced eNOS protein expression. Treatment of BPAECs with a PKCalpha-specific inhibitor or transfection of BPAECs with an anti-PKCalpha neutralizing antibody stimulated eNOS protein expression. Conversely, rottlerin, a PKCdelta specific isoform inhibitor had no effect on basal or Ang II-stimulated eNOS protein expression. Moreover, treatment of BPAECs with U73122, BAPTA/AM and PKCalpha-specific inhibitors increased NO production at 8 h. In conclusion, Ang II downregulates eNOS protein expression via an AT1 receptor-linked pathway involving Galphaq/PLC/calcium/PKCalpha signaling pathway in BPAECs.  相似文献   

11.
The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PKB activation in skeletal muscle. Insulin-stimulated phosphorylation of Akt/PKB was significantly attenuated in burned compared with sham-burned rats. Insulin-stimulated Akt/PKB kinase activity, as judged by immune complex kinase assay and phosphorylation status of the endogenous substrate of Akt/PKB, glycogen synthase kinase-3beta (GSK-3beta), was significantly impaired in burned rats. Furthermore, insulin consistently failed to increase the phosphorylation of p70 S6 kinase, another downstream effector of Akt/PKB, in rats with burn injury, whereas phosphorylation of p70 S6 kinase was increased by insulin in controls. The protein expression of Akt/PKB, GSK-3beta, and p70 S6 kinase was unaltered by burn injury. However, insulin-stimulated activation of ERK, a signaling pathway parallel to Akt/PKB, was not affected by burn injury. These results demonstrate that burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle and suggest that attenuated Akt/PKB activation may be involved in deranged metabolism and muscle wasting observed after burn injury.  相似文献   

12.
Mechanical stress is known to modulate fundamental events such as cell life and death. Mechanical stretch in particular has been identified as a positive regulator of proliferation in skin keratinocytes and other cell systems. In the present study it was investigated whether antiapoptotic signaling is also stimulated by mechanical stretch. It was demonstrated that mechanical stretch rapidly induced the phosphorylation of the proto-oncogene protein kinase B (PKB)/Akt at both phosphorylation sites (serine 473/threonine 308) in different epithelial cells (HaCaT, A-431, and human embryonic kidney-293). Blocking of phosphoinositide 3-OH kinase by selective inhibitors (LY-294002 and wortmannin) abrogated the stretch-induced PKB/Akt phosphorylation. Furthermore mechanical stretch stimulated phosphorylation of epidermal growth factor receptor (EGFR) and the formation of EGFR membrane clusters. Functional blocking of EGFR phosphorylation by either selective inhibitors (AG1478 and PD168393) or dominant-negative expression suppressed stretch-induced PKB/Akt phosphorylation. Finally, the angiotensin II type 1 receptor (AT1-R) was shown to induce positive transactivation of EGFR in response to cell stretch. These findings define a novel signaling pathway of mechanical stretch, namely the activation of PKB/Akt by transactivation of EGFR via angiotensin II type 1 receptor. Evidence is provided that stretch-induced activation of PKB/Akt protects cells against induced apoptosis.  相似文献   

13.
Angiotensin II, a hypertrophic/anti-apoptotic hormone, utilizes reactive oxygen species (ROS) as growth-related signaling molecules in vascular smooth muscle cells (VSMCs). Recently, the cell survival protein kinase Akt/protein kinase B (PKB) was proposed to be involved in protein synthesis. Here we show that angiotensin II causes rapid phosphorylation of Akt/PKB (6- +/- 0.4-fold increase). Exogenous H(2)O(2) (50-200 microM) also stimulates Akt/PKB phosphorylation (maximal 8- +/- 0.2-fold increase), suggesting that Akt/PKB activation is redox-sensitive. Both angiotensin II and H(2)O(2) stimulation of Akt/PKB are abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitors wortmannin and LY294002 (2(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), suggesting that PI3-K is an upstream mediator of Akt/PKB activation in VSMCs. Furthermore, diphenylene iodonium, an inhibitor of flavin-containing oxidases, or overexpression of catalase to block angiotensin II-induced intracellular H(2)O(2) production significantly inhibits angiotensin II-induced Akt/PKB phosphorylation, indicating a role for ROS in agonist-induced Akt/PKB activation. In VSMCs infected with dominant-negative Akt/PKB, angiotensin II-stimulated [(3)H]leucine incorporation is attenuated. Thus, our studies indicate that Akt/PKB is part of the remarkable spectrum of angiotensin II signaling pathways and provide insight into the highly organized signaling mechanisms coordinated by ROS, which mediate the hypertrophic response to angiotensin II in VSMCs.  相似文献   

14.
Cardiac protective signaling networks have been shown to involve PKCepsilon. However, the molecular mechanisms by which PKCepsilon interacts with other members of these networks to form task-specific modules remain unknown. Among 93 different PKCepsilon-associated proteins that have been identified, Akt and endothelial nitric oxide (NO) synthase (eNOS) are of importance because of their independent abilities to promote cell survival and prevent cell death. The simultaneous association of PKCepsilon, Akt, and eNOS has not been examined, and, in particular, the formation of a module containing these three proteins and the role of such a module in the regulation of NO production and cardiac protection are unknown. The present study was undertaken to determine whether these molecules form a signaling module and, thereby, play a collective role in cardiac signaling. Using recombinant proteins in vitro and PKCepsilon transgenic mouse hearts, we demonstrate the following: 1) PKCepsilon, Akt, and eNOS interact and form signaling modules in vitro and in the mouse heart. Activation of either PKCepsilon or Akt enhances the formation of PKCepsilon-Akt-eNOS signaling modules. 2) PKCepsilon directly phosphorylates and enhances activation of Akt in vitro, and PKCepsilon activation increases phosphorylation and activation of Akt in PKCepsilon transgenic mouse hearts. 3) PKCepsilon directly phosphorylates eNOS in vitro, and this phosphorylation enhances eNOS activity. Activation of PKCepsilon in vivo increased phosphorylation of eNOS at Ser(1177), indicating eNOS activation. This study characterizes, for the first time, the physical, as well as functional, coupling of PKCepsilon, Akt, and eNOS in the heart and implicates these PKCepsilon-Akt-eNOS signaling modules as critical signaling elements during PKCepsilon-induced cardiac protection.  相似文献   

15.
Inducible nitric-oxide synthase (iNOS) has been implicated in many human diseases including insulin resistance. However, how iNOS causes or exacerbates insulin resistance remains largely unknown. Protein S-nitrosylation is now recognized as a prototype of a redox-dependent, cGMP-independent signaling component that mediates a variety of actions of nitric oxide (NO). Here we describe the mechanism of inactivation of Akt/protein kinase B (PKB) in NO donor-treated cells and diabetic (db/db) mice. NO donors induced S-nitrosylation and inactivation of Akt/PKB in vitro and in intact cells. The inhibitory effects of NO donor were independent of phosphatidylinositol 3-kinase and cGMP. In contrast, the concomitant presence of oxidative stress accelerated S-nitrosylation and inactivation of Akt/PKB. In vitro denitrosylation with reducing agent reactivated recombinant and cellular Akt/PKB from NO donor-treated cells. Mutated Akt1/PKBalpha (C224S), in which cysteine 224 was substituted by serine, was resistant to NO donor-induced S-nitrosylation and inactivation, indicating that cysteine 224 is a major S-nitrosylation acceptor site. In addition, S-nitrosylation of Akt/PKB was increased in skeletal muscle of diabetic (db/db) mice compared with wild-type mice. These data suggest that S-nitrosylation-mediated inactivation may contribute to the pathogenesis of iNOS- and/or oxidative stress-involved insulin resistance.  相似文献   

16.
Insulin resistance (IR) and consequent hyperinsulinemia are hallmarks of Type 2 diabetes (DM2). Akt kinase (Akt) is an important molecule in insulin signaling, implicated in regulation of glucose uptake, cell growth, cell survival, protein synthesis, and endothelial nitric oxide (NO) production. Impaired Akt activation in insulin-sensitive tissues contributes to IR. However, Akt activity in other tissues, particularly those affected by complications of DM2, has been less studied. We hypothesized that hyperinsulinemia could have an impact on activity of Akt and its effectors involved in regulation of renal morphology and function in DM2. To address this issue, renal cortical Akt was determined in obese Zucker rats (ZO), a model of DM2, and lean controls (ZL). We also studied expression and phosphorylation of the mammalian target of rapamycin (mTOR) and endothelial NO synthase (eNOS), molecules downstream of Akt in the insulin signaling cascade, and documented modulators of renal injury. Akt activity was measured by a kinase assay with GSK-3 as a substrate. Expression of phosphorylated (active) and total proteins was measured by immunoblotting and immunohistochemistry. Renal Akt activity was increased in ZO as compared to ZL rats, in parallel with progressive hyperinsulinemia. No differences in Akt were observed in the skeletal muscle. Corresponding to increases in Akt activity, ZO rats demonstrated enhanced phosphorylation of renal mTOR. Acute PI3K inhibition with wortmannin (100 mug/kg) attenuated renal Akt and mTOR activities in ZO, but not in ZL rats. In contrast to mTOR, eNOS phosphorylation was similar in ZO and ZL rats, despite higher total eNOS expression. In conclusion, ZO rats demonstrated increases in renal Akt and mTOR activity and expression. However, eNOS phosphorylation did not follow this pattern. These data suggest that DM2 is associated with selective IR in the kidney, allowing pro-growth signaling via mTOR, whereas potentially protective effects mediated by eNOS are blunted.  相似文献   

17.
Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, mimics metabolic actions of insulin to inhibit gluconeogenesis in hepatocytes. Because signaling pathways regulating metabolic and vasodilator actions of insulin are shared in common, we hypothesized that EGCG may also have vasodilator actions to stimulate production of nitric oxide (NO) from endothelial cells. Acute intra-arterial administration of EGCG to mesenteric vascular beds isolated ex vivo from WKY rats caused dose-dependent vasorelaxation. This was inhibitable by L-NAME (NO synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), or PP2 (Src family kinase inhibitor). Treatment of bovine aortic endothelial cells (BAEC) with EGCG (50 microm) acutely stimulated production of NO (assessed with NO-specific fluorescent dye DAF-2) that was inhibitable by l-NAME, wortmannin, or PP2. Stimulation of BAEC with EGCG also resulted in dose- and time-dependent phosphorylation of eNOS that was inhibitable by wortmannin or PP2 (but not by MEK inhibitor PD98059). Specific knockdown of Fyn (but not Src) with small interfering RNA inhibited both EGCG-stimulated phosphorylation of Akt and eNOS as well as production of NO in BAEC. Treatment of BAEC with EGCG generated intracellular H(2)O(2) (assessed with H(2)O(2)-specific fluorescent dye CM-H(2)DCF-DA), whereas treatment with N-acetylcysteine inhibited EGCG-stimulated phosphorylation of Fyn, Akt, and eNOS. We conclude that EGCG has endothelial-dependent vasodilator actions mediated by intracellular signaling pathways requiring reactive oxygen species and Fyn that lead to activation of phosphatidylinositol 3-kinase, Akt, and eNOS. This mechanism may explain, in part, beneficial vascular and metabolic health effects of green tea consumption.  相似文献   

18.
Florian M  Lu Y  Angle M  Magder S 《Steroids》2004,69(10):637-645
OBJECTIVES: Acute administration of estrogen results in vasodilation and increased nitric oxide (NO) production. We examined the hypothesis that this is due to activation of Akt/PKB which subsequently increases eNOS activity. METHODS AND RESULTS: Treatment of bovine microvascular and human umbilical endothelial cells (HUVEC) with 17-beta-estradiol (E2) (10(-9) to 10(-5)M) increased phosphorylation of Akt within 1 min and this was followed by phosphorylation of eNOS. These effects were blocked by wortmannin, a PI(3)K inhibitor and the upstream activator of Akt. The estrogen receptor antagonist, ICI 182,780, inhibited eNOS phosphorylation. E2 increased calcium dependent NOS activity and nitrite production and this was inhibited by wortmannin and ICI 182,780. E2 increased the vasodilatory response of aortic rings to acetylcholine and wortmannin blocked the effect. E2 (10(-9)M) dilated cerebral microvascular vessels under conditions of no flow, constant flow and increasing flow and this was blocked by wortmannin. Tamoxifen, a partial estrogen receptor antagonist, also dilated the microvessels. CONCLUSIONS:: E2 increases NO production through an Akt/PKB dependent pathway. This is associated with increased sensitivity to endothelial dependent dilation. In cerebral microvessels, E2 and tamoxifen produce significant dilation at low concentrations with and without acetylcholine induced stimulation of endothelial vasodilation.  相似文献   

19.
In this study, we explore the roles of the delta isoform of PKC (PKCdelta) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCdelta with either rottlerin or with the peptide, deltaV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCdelta inhibition using either rottlerin or the overexpression of a dominant negative PKCdelta mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCdelta inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCdelta is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCdelta-mediated Akt activation and NO generation in maintaining eNOS expression.  相似文献   

20.
Ginsenosides have been shown to stimulate nitric oxide (NO) production in aortic endothelial cells. However, the signaling pathways involved have not been well studied in human aortic endothelial cells. The present study was designed to examine whether purified ginsenoside Rb1, a major active component of ginseng could actually induce NO production and to clarify the signaling pathway in human aortic endothelial cells. NO production was rapidly increased by Rb1. The rapid increase in NO production was abrogated by treatment with nitric oxide synthetase inhibitor, L-NAME. Rb1 stimulated rapid phosphorylation of Akt (Ser473), ERK1/2 (Thr202/Thr204) and eNOS (Ser1177). Rapid phosphorylation of eNOS (Ser1177) was prevented by SH-5, an Akt inhibitor or wortmannin, PI3-kinase inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. Interestingly, NO production and eNOS phosphorylation at Ser1177 by Rb1 were abolished by androgen receptor antagonist, nilutamide. The results suggest that PI3kinase/Akt and MEK/ERK pathways and androgen receptor are involved in the regulation of acute eNOS activation by Rb1 in human aortic endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号