首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of bisaryldiketene derivatives were designed and synthesized as a new class of specific G-quadruplex ligands. The ligand-quadruplex interactions were further evaluated by FRET, ITC, and PCR stop assay. In contrast to most of the G-quadruplex ligands reported so far, which comprise an extended aromatic ring, these compounds are neither polycyclic nor macrocyclic, but have a non-aromatic and relative flexible linker between two quinoline moieties enabling the conformation of compounds to be flexible. Our results showed that these bisaryldiketene derivatives could selectively recognize G-quadruplex DNA rather than binding to duplex DNA. Moreover, they showed promising discrimination between different G-quadruplex DNA. The primary binding affinity of ligand M2 for c-myc G-quadruplex DNA was over 200 times larger than that for telomere G-quadruplex DNA.  相似文献   

2.
A series of 1,8-dipyrazolcarbazole (DPC) derivatives (6a-6d, 7a-7d) designed as G-quadruplex ligands have been synthesized and characterized. The FRET-melting and SPR results showed that the DPC derivatives could well recognize G-quadruplex with strong discrimination against the duplex DNA. In addition, the DPC derivatives showed much stronger stabilization activities and binding affinities for c-myc G-quadruplex rather than telomeric G-quadruplex. Therefore, their interactions with c-myc G-quadruplex were further explored by means of CD spectroscopy, PCR-stop assay, and molecular modeling. In cellular studies, all compounds showed strong cytotoxicity against cancer cells, while weak cytotoxicity towards normal cells. RT-PCR assay showed that compound 7b could down-regulate c-myc gene expression in Ramos cell line, while had no effect on c-myc expression in CA46 cell line with NHE III(1) element removed, indicating its effective binding with G-quadruplex on c-myc oncogene in vivo.  相似文献   

3.
4.
The stable trioxatriangulenium ion (TOTA) has previously been shown to bind to and photooxidize duplex DNA, leading to cleavage at G residues, particularly 5'-GG-3' repeats. Telomeric DNA consists of G-rich sequences that may exist in either duplex or G-quadruplex forms. We have employed electrospray ionization mass spectrometry (ESI-MS) to investigate the interactions between TOTA and duplex DNA or G-quadruplex DNA. A variety of duplex decamer oligodeoxynucleotides form complexes with TOTA that can be detected by ESI-MS, and the stoichiometry and fragmentation patterns observed are commensurate with an intercalative binding mode. TOTA also forms complexes with four-stranded and hairpin-dimer G-quadruplex oligodeoxynucleotides that can be detected by ESI-MS. Both the stoichiometry and the fragmentation patterns observed by ESI-MS are different than those observed for G-tetrad end-stacking binding ligands. We have carried out (1)H NMR titrations of a four-stranded G-quadruplex in the presence of TOTA. Addition of up to 1 equiv of TOTA is accompanied by pronounced upfield shifts of the G-tetrad imino proton resonances in the NMR, which is similar to the effect observed for G-tetrad end-stacking ligands. At higher ratios of added TOTA, there is evidence for additional binding modes. Duplex DNA containing either human telomeric repeats (T(2)AG(3))(4) or the Tetrahymena telomeric repeats (T(2)G(4))(4) are readily photooxidized by TOTA, the major sites of oxidation being the central guanine residues in each telomeric repeat. These telomeric repeats were incorporated into duplex/quadruplex chimeras in which the repeats adopt a G-quadruplex structure. Analysis by denaturing polyacrylamide gel electrophoresis reveals significantly less TOTA photocleavage of these quadruplex telomeric repeats when compared to the duplex repeats.  相似文献   

5.
6.
7.
8.
Telomeric repeat-containing RNA is a non-coding RNA molecule newly found in mammalian cells. The telomere RNA has been found to localize to the telomere DNA, but how the newly discovered RNA molecule interacts with telomere DNA is less known. In this study, using the click chemistry we successfully found that a 6-mer human telomere RNA and 16-mer human telomere DNA sequence can form a DNA–RNA hybrid type G-quadruplex structure. Detection of the click-reaction products directly probes DNA–RNA G-quadruplex structures in a complicated solution, whereas traditional methods such as NMR and crystallography may not be suitable. Importantly, we found that formation of DNA–RNA G-quadruplex induced an exonuclease resistance for telomere DNA, indicating that such structures might be important for protecting telomeric DNA from enzyme digestion to avoid telomere DNA shortening. These results provide the direct evidence for formation of DNA–RNA hybrid G-quadruplex structure by human telomere DNA and RNA sequence, suggesting DNA–RNA hybrid G-quadruplex structure associated between telomere DNA and RNA may respond to chromosome end protection and/or present a valuable target for drug design.  相似文献   

9.
Yu H  Wang X  Fu M  Ren J  Qu X 《Nucleic acids research》2008,36(17):5695-5703
Here, we report the first example that one enantiomer of a supramolecular cylinder can selectively stabilize human telomeric G-quadruplex DNA. The P-enantiomer of this cylinder has a strong preference for G-quadruplex over duplex DNA and, in the presence of sodium, can convert G-quadruplexes from an antiparallel to a hybrid structure. The compound's chiral selectivity and its ability to discriminate quadruplex DNA have been studied by DNA melting, circular dichroism, gel electrophoresis, fluorescence spectroscopy and S1 nuclease cleavage. The chiral supramolecular complex has both small molecular chemical features and the large size of a zinc-finger-like DNA-binding motif. The complex is also convenient to synthesize and separate enantiomers. These results provide new insights into the development of chiral anticancer agents for targeting G-quadruplex DNA.  相似文献   

10.
Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling protein, mainly localized at nucleoli, that plays a number of functions in ribosome biogenesis and export, cell cycle control, and response to stress stimuli. NPM1 is the most frequently mutated gene in acute myeloid leukemia; mutations map to the C-terminal domain of the protein and cause its denaturation and aberrant cytoplasmic translocation. NPM1 C-terminal domain binds G-quadruplex regions at ribosomal DNA and at gene promoters, including the well characterized sequence from the nuclease-hypersensitive element III region of the c-MYC promoter. These activities are lost by the leukemic variant. Here we analyze the NPM1/G-quadruplex interaction, focusing on residues belonging to both the NPM1 terminal three-helix bundle and a lysine-rich unstructured tail, which has been shown to be necessary for high affinity recognition. We performed extended site-directed mutagenesis and measured binding rate constants through surface plasmon resonance analysis. These data, supported by molecular dynamics simulations, suggest that the unstructured tail plays a double role in the reaction mechanism. On the one hand, it facilitates the formation of an encounter complex through long range electrostatic interactions; on the other hand, it directly contacts the G-quadruplex scaffold through multiple and transient electrostatic interactions, significantly enlarging the contact surface.  相似文献   

11.

Background

G-quadruplexes are polymorphic non-canonical nucleic acid conformations involved both in physiological and pathological processes. Given the high degree of folding heterogeneity and comparable conformational stabilities, different G-quadruplex forms can occur simultaneously, hence rendering the use of basic instrumental methods for structure determination, like X-ray diffraction or NMR, hardly useful. Footprinting techniques represent valuable and relatively rapid alternative to characterize DNA folding. The natural diterpenoid clerocidin is an alkylating agent that specifically reacts at single-stranded DNA regions, with different mechanisms depending on the exposed nucleotide.

Methods

Clerocidin was used to footprint G-quadruplex structures formed by telomeric and oncogene promoter sequences (c-myc, bcl-2, c-kit2), and by the thrombin binding aptamer.

Results

The easy modulability of CL reactivity towards DNA bases permitted to discriminate fully and partially protected sites, highlights stretched portions of the G-quadruplex conformation, and discriminate among topologies adopted by one sequence in different environmental conditions. Importantly, CL displayed the unique property to allow detection of G-quadruplex folding within a duplex context.

Conclusions

CL is a finely performing new tool to unveil G-quadruplex arrangements in DNA sequences under genomically relevant conditions.

General significance

Nucleic acid G-quadruplex structures are an emerging research field because of the recent indication of their involvement in a series of key biological functions, in particular in regulation of proliferation-associated gene expression. The use of clerocidin as footprinting agent to identify G-quadruplex structures under genomically relevant conditions may allow detection of new G-quadruplex-based regulatory regions.  相似文献   

12.
富含鸟嘌呤的单链DNA序列可以缠绕折叠形成G- 四链体结构。人类基因组中有36,000 个以上的DNA 序列有潜力生成 G-四链体,如端粒末端重复序列,以及c-myc、c-kit、bcl-2 等原癌基因启动子区域。G-四链体是由四个鸟嘌呤之间通过Hoogsteen 氢键形成G-四分体,相邻的G-四分体再通过π-π 堆积作用,由糖- 磷酸骨架相连而成。G- 四链体DNA 的形成有着重要的生 物学意义,它和相关基因表达水平密切相关,诱导和稳定G- 四链体结构就有可能抑制癌基因的转录和表达,引起肿瘤细胞生物 学功能的紊乱,从而抑制肿瘤细胞的增殖。G-四链体结构作为新的抗肿瘤药物靶点引起了科学家的广泛关注,能够稳定G- 四链 体结构的配体包括二酰胺蒽醌类、苝类、阳离子卟啉类、金属配合物和天然产物等。本文对近年来以G-四链体为靶点的配体的研 究进行了综述。  相似文献   

13.
富含鸟嘌呤的单链DNA序列可以缠绕折叠形成G-四链体结构。人类基因组中有36,000个以上的DNA序列有潜力生成G-四链体,如端粒末端重复序列,以及c-myc、c-kit、bcl-2等原癌基因启动子区域。G-四链体是由四个鸟嘌呤之间通过Hoogsteen氢键形成G-四分体,相邻的G-四分体再通过π-π堆积作用,由糖-磷酸骨架相连而成。G-四链体DNA的形成有着重要的生物学意义,它和相关基因表达水平密切相关,诱导和稳定G-四链体结构就有可能抑制癌基因的转录和表达,引起肿瘤细胞生物学功能的紊乱,从而抑制肿瘤细胞的增殖。G-四链体结构作为新的抗肿瘤药物靶点引起了科学家的广泛关注,能够稳定G-四链体结构的配体包括二酰胺蒽醌类、苝类、阳离子卟啉类、金属配合物和天然产物等。本文对近年来以G-四链体为靶点的配体的研究进行了综述。  相似文献   

14.
Sun D  Guo K  Shin YJ 《Nucleic acids research》2011,39(4):1256-1265
The polypurine/polypyrimidine (pPu/pPy) tract of the human vascular endothelial growth factor (VEGF) gene is proposed to be structurally dynamic and to have potential to adopt non-B DNA structures. In the present study, we further provide evidence for the existence of the G-quadruplex structure within this tract both in vitro and in vivo using the dimethyl sulfate (DMS) footprinting technique and nucleolin as a structural probe specifically recognizing G-quadruplex structures. We observed that the overall reactivity of the guanine residues within this tract toward DMS was significantly reduced compared with other guanine residues of the flanking regions in both in vitro and in vivo footprinting experiments. We also demonstrated that nucleolin, which is known to bind to G-quadruplex structures, is able to bind specifically to the G-rich sequence of this region in negatively supercoiled DNA. Our chromatin immunoprecipitation analysis further revealed binding of nucleolin to the promoter region of the VEGF gene in vivo. Taken together, our results are in agreement with our hypothesis that secondary DNA structures, such as G-quadruplexes, can be formed in supercoiled duplex DNA and DNA in chromatin in vivo under physiological conditions similar to those formed in single-stranded DNA templates.  相似文献   

15.
Discovery of potent and selective ligands for telomeric G-quadruplex DNA is a challenging work. Through a combination approach of pharmacophore model construction, model validation, database virtual screening, chemical synthesis and interaction evaluation, we discovered and confirmed triaryl-substituted imidazole TSIZ01 to be a new telomeric G-quadruplex ligand with potent binding and stabilizing activity to G-quadruplex DNA, as well as a 8.7-fold selectivity towards telomeric G-quadruplex DNA over duplex DNA.  相似文献   

16.
17.
Particular guanine rich nucleic acid sequences can fold into stable secondary structures called G-quadruplexes. These structures have been identified in various regions of the genome that include the telomeres, gene promoters and UTR regions, raising the possibility that they may be associated with biological function(s). Computational analysis has predicted that intramolecular G-quadruplex forming sequences are prevalent in the human genome, thus raising the desire to differentially recognize genomic G-quadruplexes. We have employed antibody phage display and competitive selection techniques to generate a single-chain antibody that shows >1000-fold discrimination between G-quadruplex and duplex DNA, and furthermore >100-fold discrimination between two related intramolecular parallel DNA G-quadruplexes. The amino acid sequence composition at the antigen binding site shows conservation within the light and heavy chains of the selected scFvs, suggesting sequence requirements for G-quadruplex recognition. Circular dichroism (CD) spectroscopic data showed that the scFv binds to the prefolded G-quadruplex and does not induce G-quadruplex structure formation. This study demonstrates the strongest discrimination that we are aware of between two intramolecular genomic G-quadruplexes.  相似文献   

18.
The potential formation of G-quadruplexes in many regions of the genome makes them an attractive target for drug design. A large number of small molecules synthesized in recent years display an ability to selectively target and stabilize G-quadruplexes. To screen for G4 ligands, we modified a G4-FID (G-quadruplex Fluorescent Intercalator Displacement) assay. This test is based on the displacement of an “on/off” fluorescence probe, Thiazole Orange (TO), from quadruplex or duplex DNA matrices by increasing amounts of a putative ligand. Selectivity measurements can easily be achieved by comparing the ability of the ligand to displace TO from various quadruplex and duplex structures. G4-FID requires neither modified oligonucleotides nor specific equipment and is an isothermal experiment. This test was adapted for high throughput screening onto 96-well plates allowing the comparison of more than twenty different structures. Fifteen different known G4 ligands belonging to different families were tested. Most compounds showed a good G4 vs duplex selectivity but exhibited little, if any, specificity for one quadruplex sequence over the others. The quest for the “perfect” specific G4 ligand is not over yet!  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号