首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The VDAC channel of the mitochondrial outer membrane is voltage-gated like the larger, more complex voltage-gated channels of the plasma membrane. However, VDAC is a low molecular weight (30 kDa), abundant protein, which is readily purified and reconstituted, making it an ideal system for analyzing the molecular basis for ion selectivity and voltage-gating. We have probed the VDAC channel by subjecting the cloned yeast (S. cerevisiae) VDAC gene to site-directed mutagenesis and introducing the resulting mutant channels into planar bilayers to detect the effects of specific sequence changes on channel properties. This approach has allowed us to formulate and test a model of the open state structure of the VDAC channel. Now we have applied the same approach to analyzing the structure of the channel's low-conducting "closed state" (essentially closed to important metabolites). We have identified protein domains forming the wall of the closed conformation and domains that seem to be removed from the wall of the pore during channel closure. The latter can explain the reduction in pore diameter and volume and the dramatically altered channel selectivity resulting from the channel closure. This process would make a natural coupling between motion of the sensor and channel gating.  相似文献   

3.
The activity of voltage-gated sodium channels contributes to onset and duration of the cardiac action potential through an intricate balance with the activity of other ion channels. Activation of sodium channels leads to membrane depolarization and Phase 0 of the cardiac action potential. Sodium channel fast inactivation contributes to Phase 1, the initial repolarization. Slow inactivation and closed state fast inactivation determine channel availability and, thus, overall membrane excitability. Defects in any of these biophysical states or transitions between them, imparted by (over 170 reported thus far, including both Long QT3 and Brugada syndromes) mutations in the (over 2000) amino acids that compose the sodium channel protein, can lead to channel dysfunction that manifests as an abnormal cardiac action potential and electrocardiogram. A causal relationship between several such abnormalities and the panoply of sodium channel mutations have led to a greater understanding of the molecular underpinnings of cardiac arrhythmias as well as a deeper appreciation for the intricacies of sodium channel function. Here, we review the literature regarding these causal relationships from a perspective of the biophysical properties of sodium channels.  相似文献   

4.
5.
6.
Membrane mechanics can account for fusion pore dilation in stages.   总被引:3,自引:0,他引:3       下载免费PDF全文
Once formed, fusion pores rapidly enlarge to semi-stable conductance values. The membranes lining the fusion pore are continuous bilayer structures, so variations of conductance in time reflect bending and stretching of membranes. We therefore modeled the evolution of fusion pores using the theory of the mechanics of deforming homogeneous membranes. We calculated the changes in length and width of theoretical fusion pores according to standard dynamical equations of motion. Theoretical fusion pores quickly achieve semi-stable dimensions, which correspond to energy minima located in a canyon between energy barriers. The height of the barrier preventing pore expansion diminishes along the dimensions of length and width. The bottom of the canyon slopes gently downward along increasing length. As a consequence, theoretical fusion pores slowly lengthen and widen as the dimensions migrate along the bottom of the canyon, until the barrier vanishes and the pore rapidly enlarges. The dynamics of growth is sensitive to tension, spontaneous curvature, bending elasticity, and mobilities. This sensitivity can account for the quantitative differences in pore evolution observed in two experimental systems: HA-expressing cells fusing to planar bilayer membranes and beige mouse mast cell degranulation. We conclude that the mechanics of membranes could cause the phenomenon of stagewise growth of fusion pores.  相似文献   

7.
Single-photon responses (SPRs) in vertebrate rods are considerably less variable than expected if isomerized rhodopsin (R*) inactivated in a single, memoryless step, and no other variability-reducing mechanisms were available. We present a new stochastic model, the core of which is the successive ratcheting down of R* activity, and a concomitant increase in the probability of quenching of R* by arrestin (Arr), with each phosphorylation of R* (Gibson, S.K., J.H. Parkes, and P.A. Liebman. 2000. Biochemistry. 39:5738-5749.). We evaluated the model by means of Monte-Carlo simulations of dim-flash responses, and compared the response statistics derived from them with those obtained from empirical dim-flash data (Whitlock, G.G., and T.D. Lamb. 1999. Neuron. 23:337-351.). The model accounts for four quantitative measures of SPR reproducibility. It also reproduces qualitative features of rod responses obtained with altered nucleotide levels, and thus contradicts the conclusion that such responses imply that phosphorylation cannot dominate R* inactivation (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Moreover, the model is able to reproduce the salient qualitative features of SPRs obtained from mouse rods that had been genetically modified with specific pathways of R* inactivation or Ca2+ feedback disabled. We present a theoretical analysis showing that the variability of the area under the SPR estimates the variability of integrated R* activity, and can provide a valid gauge of the number of R* inactivation steps. We show that there is a heretofore unappreciated tradeoff between variability of SPR amplitude and SPR duration that depends critically on the kinetics of inactivation of R* relative to the net kinetics of the downstream reactions in the cascade. Because of this dependence, neither the variability of SPR amplitude nor duration provides a reliable estimate of the underlying variability of integrated R* activity, and cannot be used to estimate the minimum number of R* inactivation steps. We conclude that multiple phosphorylation-dependent decrements in R* activity (with Arr-quench) can confer the observed reproducibility of rod SPRs; there is no compelling need to invoke a long series of non-phosphorylation dependent state changes in R* (as in Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Our analyses, plus data and modeling of others (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.), also argue strongly against either feedback (including Ca2+-feedback) or depletion of any molecular species downstream to R* as the dominant cause of SPR reproducibility.  相似文献   

8.
In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain.  相似文献   

9.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human L1 as a culture substrate for rat PC12 cells and rat cerebellar neurons. PC12 cells and cerebellar neurons extended longer neurites on human L1 expressing cells. Neurons isolated from the cerebellum at postnatal day 9 responded equally as well as those isolated at postnatal day 1-4, and this contrasts with the failure of these older neurons to respond to the transfected human neural cell adhesion molecule (NCAM). Human L1-dependent neurite outgrowth could be blocked by antibodies that bound to rat L1 and, additionally, the response could be fully inhibited by pertussis toxin and substantially inhibited by antagonists of L- and N-type calcium channels. Calcium influx into neurons induced by K+ depolarization fully mimics the L1 response. Furthermore, we show that L1- and K+(-)dependent neurite outgrowth can be specifically inhibited by a reduction in extracellular calcium to 0.25 microM, and by pretreatment of cerebellar neurons with the intracellular calcium chelator BAPTA/AM. In contrast, the response was not inhibited by heparin or by removal of polysialic acid from neuronal NCAM both of which substantially inhibit NCAM-dependent neurite outgrowth. These data demonstrate that whereas NCAM and L1 promote neurite outgrowth via activation of a common CAM-specific second messenger pathway in neurons, neuronal responsiveness to NCAM and L1 is not coordinately regulated via posttranslational processing of NCAM. The fact that NCAM- and L1-dependent neurite outgrowth, but not adhesion, are calcium dependent provides further evidence that adhesion per se does not directly contribute to neurite outgrowth.  相似文献   

10.
Many drugs block sodium channels from the cytoplasmic end (Moczydlowski, E., A. Uehara, X, Guo, and J. Heiny. 1986. Isochannels and blocking modes of voltage-dependent sodium channels. Ann. N.Y. Acad. Sci. 479:269-292.). Lidocaine, applied to either side of the membrane, induces two blocking modes, a rapid, voltage-dependent open-channel block, and a block of the inactivated channel that occurs on a 1000-fold slower timescale. Here we describe the actions of several lidocaine-related amines on batrachotoxin(BTX)-activated bovine cardiac sodium channels incorporated into planar lipid bilayers. We applied blocking amines from the intracellular side and examined the structural determinants of fast, open-channel block. Neither hydroxyl nor carbonyl groups, present in the aryl-amine link of lidocaine, were necessary, indicating that hydrogen bonding between structures in the aryl-amine link and the channel is not required. Block, however, was significantly enhanced by addition of an aromatic ring, or by the lengthening of aliphatic side chains, suggesting that a hydrophobic domain strengthens binding while the amine group blocks the pore. For most blockers, depolarizing potentials enhanced block, with the charged amine group apparently traversing 45-60% of the transmembrane voltage. By contrast, block by phenylhydrazine was essentially voltage-independent. The relatively rigid planar structure of phenylhydrazine may prevent the charged amino end from entering the electric field when the aromatic ring is bound. The relation between structural features of different blockers and their sensitivity to voltage suggests that the transmembrane voltage drops completely over less than 5 A. We raise the possibility that the proposed hydrophobic binding domain overlaps the endogenous receptor for the inactivation gate. If so, our data place limits on the distance between this receptor and the intrapore site at which charged amines bind.  相似文献   

11.
The direct inhibition of N- and P/Q-type calcium channels by G protein betagamma subunits is considered a key mechanism for regulating presynaptic calcium levels. We have recently reported that a number of features associated with this G protein inhibition are dependent on the G protein beta subunit isoform (Arnot, M. I., Stotz, S. C., Jarvis, S. E., Zamponi, G. W. (2000) J. Physiol. (Lond.) 527, 203-212; Cooper, C. B., Arnot, M. I., Feng, Z.-P., Jarvis, S. E., Hamid, J., Zamponi, G. W. (2000) J. Biol. Chem. 275, 40777-40781). Here, we have examined the abilities of different types of ancillary calcium channel beta subunits to modulate the inhibition of alpha(1B) N-type calcium channels by the five known different Gbeta subunit subtypes. Our data reveal that the degree of inhibition by a particular Gbeta subunit is strongly dependent on the specific calcium channel beta subunit, with N-type channels containing the beta(4) subunit being less susceptible to Gbetagamma-induced inhibition. The calcium channel beta(2a) subunit uniquely slows the kinetics of recovery from G protein inhibition, in addition to mediating a dramatic enhancement of the G protein-induced kinetic slowing. For Gbeta(3)-mediated inhibition, the latter effect is reduced following site-directed mutagenesis of two palmitoylation sites in the beta(2a) N-terminal region, suggesting that the unique membrane tethering of this subunit serves to modulate G protein inhibition of N-type calcium channels. Taken together, our data suggest that the nature of the calcium channel beta subunit present is an important determinant of G protein inhibition of N-type channels, thereby providing a possible mechanism by which the cellular/subcellular expression pattern of the four calcium channel beta subunits may regulate the G protein sensitivity of N-type channels expressed at different loci throughout the brain and possibly within a neuron.  相似文献   

12.
Limulus ventral photoreceptors generate highly variable responses to the absorption of single photons. We have obtained data on the size distribution of these responses, derived the distribution predicted from simple transduction cascade models and compared the theory and data. In the simplest of models, the active state of the visual pigment (defined by its ability to activate G protein) is turned off in a single reaction. The output of such a cascade is predicted to be highly variable, largely because of stochastic variation in the number of G proteins activated. The exact distribution predicted is exponential, but we find that an exponential does not adequately account for the data. The data agree much better with the predictions of a cascade model in which the active state of the visual pigment is turned off by a multi-step process.  相似文献   

13.
Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3–S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3–S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3–S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3–S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3–S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms within the IV and I VSDs, respectively.  相似文献   

14.
15.
Computer analysis of DNA polymerase protein sequences revealed previously unidentified conserved domains that belong to two distinct superfamilies of phosphoesterases. The alpha subunits of bacterial DNA polymerase III and two distinct family X DNA polymerases are shown to contain an N-terminal domain that defines a novel enzymatic superfamily, designated PHP, after polymerase and histidinol phosphatase. The predicted catalytic site of the PHP superfamily consists of four motifs containing conserved histidine residues that are likely to be involved in metal-dependent catalysis of phosphoester bond hydrolysis. The PHP domain is highly conserved in all bacterial polymerase III alpha subunits, but in proteobacteria and mycoplasmas, the conserved motifs are distorted, suggesting a loss of the enzymatic activity. Another conserved domain, found in the small subunits of archaeal DNA polymerase II and eukaryotic DNA polymerases alpha and delta, is shown to belong to the superfamily of calcineurin-like phospho-esterases, which unites a variety of phosphatases and nucleases. The conserved motifs required for phospho-esterase activity are intact in the archaeal DNA polymerase subunits, but are disrupted in their eukaryotic orthologs. A hypothesis is proposed that bacterial and archaeal replicative DNA polymerases possess intrinsic phosphatase activity that hydrolyzes the pyrophosphate released during nucleotide polymerization. As proposed previously, pyrophosphate hydrolysis may be necessary to drive the polymerization reaction forward. The phosphoesterase domains with disrupted catalytic motifs may assume an allosteric, regulatory function and/or bind other subunits of DNA polymerase holoenzymes. In these cases, the pyrophosphate may be hydrolyzed by a stand-alone phosphatase, and candidates for such a role were identified among bacterial PHP superfamily members.  相似文献   

16.
The maintenance of partition-defective (Par-) mini-P1 and mini-F plasmids was studied in topA strains of Escherichia coli, which are defective in topoisomerase I activity. The partition defects were substantially but not completely suppressed in broth-grown cultures. This suppression was not due to a large increase in copy number. However, the absolute number of copies of Par- mini-P1 plasmids per average dividing cell is sufficiently high to account for the modest stability observed if a random distribution of the copies to daughter cells is assumed. The similar number of Par- plasmid copies in wild-type cells are distributed in a considerably worse-than-random fashion. Thus, it is unnecessary to propose, as was suggested previously, that an active, par-independent pathway operates in topA strains to ensure proper segregation of the plasmids to daughter cells. Rather, it seems likely that the lack of topoisomerase I activity aids the random distribution of the partition-defective plasmids, perhaps by facilitating their separation after replication. The results of studies carried out at reduced growth rates were consistent with this view; when topA cells containing Par- mini-P1 plasmids were cultured in minimal medium, in which the copy number of the plasmids per average cell is sharply reduced, very little suppression of the partition defect was observed.  相似文献   

17.
Terbium, a trivalent lanthanide, effectively substituted for Ca2+ in calmodulin as judged by several criteria: intrinsic fluorescence spectra, altered mobilities on polyacrylamide gel electrophoresis, formation of a stable complex with troponin I or calcineurin, and stimulation of phosphodiesterase. Calmodulin harbors four Ca2+ binding domains; domains I and II contain no tyrosine, whereas domains III and IV each have one tyrosine. The binding of Tb3+ to calmodulin was followed by the increase of Tb3+ fluorescence at 545 nm upon binding to calmodulin. This fluorescence was elicited either by exciting Tb3+ directly at 222 nm or by exciting the calmodulin tyrosine at 280 nm with resulting energy transfer from tyrosine to Tb3+. Fluorescence generated by direct excitation measures binding of Tb3+ to any of the Ca2+ binding domains, whereas energy transfer through indirect excitation is effective only when Tb3+ is within 5 A of tyrosine, indicating that Tb3+ necessarily occupies a Ca2+ binding domain that contains tyrosine. A judicious use of the direct and indirect excitation could reveal the sequence of fill of the binding domains. Our results suggest these domains are filled in the following sequence: 1) domain I or II; 2) domains III and IV; and 3) domain II or I that has not been filled initially.  相似文献   

18.
Ryanodine binds with high affinity and specificity to a class of Ca(2+)-release channels known as ryanodine receptors (RyR). The interaction with RyR results in a dramatic alteration in function with open probability (Po) increasing markedly and rates of ion translocation modified. We have investigated the features of ryanodine that govern the interaction of the ligand with RyR and the mechanisms underlying the subsequent alterations in function by monitoring the effects of congeners and derivatives of ryanodine (ryanoids) on individual RyR2 channels. While the interaction of all tested ryanoids results in an increased Po, the amplitude of the modified conductance state depends upon the structure of the ryanoid. We propose that different rates of cation translocation observed in the various RyR-ryanoid complexes represent different conformations of the channel stabilized by specific conformers of the ligand. On the time scale of a single channel experiment ryanodine binds irreversibly to the channel. However, alterations in structure yield some ryanoids with dissociation rate constants orders of magnitude greater than ryanodine. The probability of occurrence of the RyR-ryanoid complex is sensitive to trans-membrane voltage, with the vast majority of the influence of potential arising from a voltage-driven alteration in the affinity of the ryanoid-binding site.  相似文献   

19.
D R Ferry  A Goll    H Glossmann 《The EMBO journal》1983,2(10):1729-1732
Radiation inactivation was employed to measure the molecular size of calcium channels in guinea-pig skeletal muscle membranes, labelled by the potent 1,4-dihydropyridine calcium antagonist [3H]nimodipine. The molecular size was decreased when the membranes were preincubated and assayed with d-cis-diltiazem, a calcium channel blocker, which is structurally unrelated to the 1,4-dihydropyridines. d-cis-Diltiazem, which is a positive heterotropic regulator of 1,4-dihydropyridine calcium channel binding in vitro, reduced the molecular size from 178 000 to 111 500. 1-cis-Diltiazem, the diastereoisomer, which is devoid of calcium antagonistic action, did not decrease the molecular size of the 1,4-dihydropyridine binding site. Neither diastereoisomer affected the molecular size of the membrane-bound acetyl-cholinesterase, indicating that a stereospecific interaction with the calcium channel structure is the basis for these observations. It is concluded that this decrease in size is indicative of the oligomeric nature of the calcium channel and that calcium channel blockers, acting via different, but interacting drug receptor sites, induce different conformations of the channel structure, resulting in altered conductivity for ions.  相似文献   

20.
Swapping of functional domains in voltage-gated K+ channels.   总被引:5,自引:0,他引:5  
Functionally significant properties of domains in the amino acid sequence of potassium (K+) channel-forming proteins have been investigated by constructing chimeric K+ channels. The N-terminal domain of ShA2 channels was responsible for the fast inactivation (IKA) and also determined a shift in the threshold of activation whereas the membrane domain determined the timecourse of slow inactivation. The binding site for dendrotoxin (DTX), but not for mast cell degranulating peptide (MCDP), is completely located on the loop between the membrane spanning segments S5 and S6 in RCK1 channels. A certain part of this region which has recently been designated as a narrow part of the pore was found to be not responsible for the differences in the single-channel current amplitude between RCK4 and RCK2 K+ channels. Interchange of the C-terminal domain did not influence activation or inactivation of the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号