首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of whole living cells was used as an experimental approach to enhance plasmid stability in cultured recombinant micro-organisms. pTG201 plasmid which is very unstable in continuous cultures with free cells, was found to be extremely stable in continuous cultures with immobilized cells.To elucidate the mechanism by which immobilization increases the plasmid stability, we analyzed the growth of pTG201-containing E. coli W3101 cells within the gel beads. We found that in immobilized continuous culture, plasmid-free segregants were not detected even after 240 generations. This appears to be due to the mechanical properties of the gel-bead system that allow only a limited number of cell divisions (10–16) to occur in each clone of cells before the clone escapes from the gel bead. This number of generations is not sufficient for the plasmid-free cells to appear within the cavities compared to what was observed in a free-system (plasmid-free segregants were detected after a lag period of approximately 25–30 generations). Even when they appear, they cannot overcome the culture. From the data described in this paper we conclude that cells released from the gel beads at any time during continuous culture are cells which are issued from cells grown in the cavities for only 10–16 generations.  相似文献   

2.
Escherichia coli B/pTG201 recombinant cells were immobilized by entrapment in a carrageenan gel and cultivated in nonselective media to investigate the effect of agitation rate on plasmid stability, biomass concentration, and enzyme productivity. These parameters were studied in continuous cultures for free and immobilized cells, respectively. Immobilized recombinant cells exhibit an increase in the stability of the plasmid pTG201 compared to free cells, even under conditions where the tendency of plasmid stability for free cells decreased generally more rapidly under a higher agitation rate. Intensive agitation, resulting also in a strong shear stress, greatly reduced cell concentration within gel beads throughout the course of growth. Higher enzyme expression of catechol 2–3, dioxygenase was also obtained in leaked cells due to better maintenance of plasmid stability and higher plasmid copy number with regard to free cells. Enzyme productivity of leaked and free cells in minimal medium decreased with the increase in agitation rate, due to decreased plasmid stability; however, in LB medium, it increased in the presence of higher agitation rate related to important cell concentration.  相似文献   

3.
Summary In this study, an oxygen microsensor was used to measure oxygen concentration profiles in carrageenan gel particles containing growing, immobilizedEcherichia coli B (pTG201). Profiles, which were measured at intervals during continuous culture of gel slabs and beads, became increasingly steep with time. The oxygen penetration depth in the gel decreased with time, eventually reaching a steady state value of approximately 100 m for both gel beads and slabs. A reaction-diffusion model employing zero-order cell growth kinetics was found to provide an excellent fit to the experimental concentration data. Growth rates estimated from profiles obtained during the first few hours of culture were 0.24h–1 (gel slabs) and 0.18 h–1 (beads), compared to a value of 0.30 h–1 measured in free-cell suspensions at 25° C.  相似文献   

4.
Summary The performance of an external loop air-lift bioreactor was investigated by assessing the inter-relationships between various hydrodynamic properties and mass transfer. The feasibility of using this bioreactor for the production of monoclonal antibodies by mouse hybridoma cells immobilized in calcium alginate gel beads and alginate/poly-l-lysine microcapsules was also examined. When the superficial gas velocity, V g , in the 300 ml reactor was varied from 2 to 36 cm/min, the average liquid velocity increased from 3 to 14 cm/sec, the gas hold-up rose from 0.2 to 3.0%, and the oxygen mass transfer coefficient, k L a, increased from 2.5 to 18.1 h-1. A minimum liquid velocity of 4 cm/s was required to maintain alginate gel beads (1000 m diameter, occupying 3% of reactor volume) in suspension. Batch culture of hybridoma cells immobilized in alginate beads followed logarithmic growth, reaching a concentration of 4×107 cells/ml beads after 11 days. Significant antibody production did not occur until day 9 into the culture, reaching a value of 100 g/ml of medium at day 11. On the other hand, bioreactor studies with encapsulated hybridoma cells gave monoclonal antibody concentrations of up to 800 g/ml capsules (the antibody being retained within the semipermeable capsule) and maximum cell densities of 2×108 cells/ml capsule at day 11. The volumetric productivities of the alginate gel immobilized cell system and the encapsulated cell system were 9 and 3 g antibody per ml of reactor volume per day, respectively. The main advantage of the bioreactor system is its simple design, since no mechanical input is required to vary the hydrodynamic properties.  相似文献   

5.
In order to better understand the high plasmid stability in immobilized recombinant E. coli cells, the effects of dilution rate on the pTG201 plasmid stability, the copy number, and the catechol 2,3-dioxygenase (encoded by XyIE gene) production were, at first, studied in free E. coli W3101 continuous cultures in minimal media. It was found that decreasing specific growth rate increased the plasmid copy number and the catechol 2,3-dioxygenase activity but the stability decreased. In continuous culture with immobilized cells, an increase was shown in plasmid copy number and catechol 2,3-dioxygenase activity probably due to the distribution of growth in the gel beads. Besides mechanical properties of gel beads which may allow limited cell divisions, the increase in plasmid copy number is involved in enhanced plasmid stability in immobilized cells. In the same way, an experiment conducted in LB medium dealing with competition between pTG201-free and pTG201-containing E. coli B cells was described. It was shown that the competition was not more pronounced in gel bead compared to a free system. The effects of nutritional limitations on pTG201 plasmid stability and catechol 2,3-dioxygenase activity during chemostat cultivations in free and immobilized E. coli B cells were also investigated. It was found that immobilization of cells increased the stability of pTG201 even under glucose, nitrogen, or phosphate limited cultures. However in the case of magnesium depleted culture, pTG201 was shown to be relatively instable and a decrease in viable cell number during the immobilized continuous culture was observed. By contrast to the free system, the catechol 2,3-dioxygenase activity increased in immobilized cells under all culture conditions used.  相似文献   

6.
The long term shear effects on a hybridoma cell line were studied by the simulation of a hollow fiber perfusion system. Various mechanical/environmental stress conditions were applied and steady state concentrations of live, dead and lysed cells were measured or calculated in a continuous culture. From mathematical modeling, it is shown that inclusion of a lysed cell index (LCI) renders a better fit to the material balance equation at steady state. The specific cell death rate increased with increasing shear force as expected only when the LCI was included. Without the inclusion of the LCI, the calculated specific cell growth rates are about 25–60% of the value when included. The results reported may lend some insight to design improvements since most perfusion devices add shear stresses to the cells in the reactor.List of Symbols b ml/hr continuous culture flow rate - D hr–1 dilution rate (b/V) - m g glucose/109 cells/hr specific maintenance coefficient - S 0 g/l feed substrate concentration - S g/l reactor substrate concentration - t hr time - V ml reactor volume - X + cells/ml live cell concentration - X cells/ml dead cell concentration - X 0 cells/ml lysed cell concentration - Y x/s 109 cells/g glucose cell/substrate yield coefficient - hr–1 specific growth rate - hr–1 specific death rate - hr–1 specific lysis rate - hr–1 specific lysis rate for simultaneous death and lysis  相似文献   

7.
The microbial population from a reactor using methane as electron donor for denitrification under microaerophilic conditions was analyzed. High numbers of aerobic methanotrophic bacteria (3 107 cells/ml) and high numbers of acetate-utilizing denitrifying bacteria (2 107 cells/ml) were detected, but only very low numbers of methanol-degrading denitrifying bacteria (4 104 cells/ml) were counted. Two abundant acetate-degrading denitrifiers were isolated which, based on 16S rRNA analysis, were closely related to Mesorhizobium plurifarium (98.4% sequence similarity) and a Stenotrophomonas sp. (99.1% sequence similarity). A methanol-degrading denitrifying bacterium isolated from the bioreactor morphologically resembled Hyphomicrobium sp. and was moderately related to H. vulgare (93.5% sequence similarity). The initial characterization of the most abundant methanotrophic bacterium indicated that it belongs to class II of the methanotrophs. “In vivo”13C-NMR with concentrated cell suspensions showed that this methanotroph produced acetate under oxygen limitation. The microbial composition of reactor material together with the NMR experiments suggest that in the reactor methanotrophs excrete acetate, which serves as the direct electron donor for denitrification. Received: 19 October 1999 / Received revision: 11 January 2000 / Accepted: 14 January 2000  相似文献   

8.
Continuous cultures of Chaetoceros muelleri and Isochrysis galbana were grown outdoors in flat plate-glass reactors in which light-path length (LPL) varied from 5 to 30 cm. High daily productivity (13 to 16 g cell mass per square meter of irradiated reactor surface) for long periods of time was obtained in reactors in which the optical path as well as cell density were optimized. 'Twenty centimeters was the optimal LPL, yielding the highest areal productivity of cell mass (g m–2d–1), eicosapentaenoic acid, and docosahexaenoic acid, which was identical with that previously found for polysaccharide production of Porphyridium and not far from the optimal LPL affecting maximal productivity in Nannochloropsis species. Relating the energy impinging on a given reactor surface area to the appropriate number of cells showed that the most efficient light dose per cell, obtained with the 20-cm LPL reactor, was approximately 2.5 times lower than the light dose available per cell in the 5-cm LPL reactor, in which a significant decline in areal cell density accompanied the lowest areal output of cell mass. The most effective harvesting regimen was in the range of 10% to 15% of culture volume harvested daily and replaced with fresh growth medium, resulting in a sustainable culture density of 24 × 106 and 28 × 106 cells/ml of C. muelleri and I. galbana, respectively.  相似文献   

9.
“Bryndza” is a traditional Slovak dairy product (type of soft cheese) made from sheep cheese which was ripened for 14 days. Because its manufacture, transporting and/or storing represent conditions which facilitate contamination, the effect of enterocin CCM4231 in “bryndza” was investigated with the aim to reduce the contaminant agents. “Bryndza” was divided into equal portions (50 g). The experimental sample (ES) as well as the control sample one (C1) were inoculated with Listeria innocua Li1 strain. The other control samples C2 and C3 were without Li1 strain. C3 control was selected as a reference control. ES and C2 portions were treated with purified enterocin CCM4231 in a concentration of 6400 AU/ml. Before the experimental inoculation, “bryndza” was checked for the presence of contaminant agents. The experiment lasted 1 week and the samples were stored in the refrigerator at 4 °C. Sampling was performed on day 1, on day 4 and on day 7. The control samples C2 and C3 were checked only on day 1 and then after 1 week. The following contaminant agents were detected in “bryndza” before its experimental inoculation with L. innocua Li1 strain: Escherichia coli in the amount 103 cfu/ml/g, Staphylococcus aureus (102 cfu/ml/g) and enterococci (104 cfu/ml/g). In the control sample C2, the number of E. coli was reduced to 102 cfu/ml/g. Enterococci and staphylococci were totally eliminated there. Concerning C3 control, natural decrease of bacteria was found and/or their unchanged counts. The value of pH (5) was stable during the whole experiment. In the experimental sample inoculated with Li1 strain, its counts were decreased immediately after enterocin CCM4231 addition approximately by one order of magnitude. This inhibitory effect was also detectable on day 4 by the difference of one order of magnitude between ES and C1. On day 7, 103 cfu/ml/g of Li1 strain were detected in both samples (ES, C1). The difference by one order of magnitude indicated, an inhibitory effect of enterocin CCM4231 in “bryndza”. However, bacteriocin activity was not determined by laboratory analyses.  相似文献   

10.
Summary Growing cells ofLactobacillus casei were entrapped in-carrageenan/locust bean gum (LBG) (2:1 or 2.75%:0.25% w/w respectively) mixed gel beads (two ranges of diameter: 0.5–1.0 and 1.0–2.0 mm) to fermentLactobacillus Selection (LBS) medium and produce biomass. The results showed significant influence of initial cell loading of the beads and bead size on the fermentation rate. The highest cell release rates were obtained with 2.75%:0.25%-carrageenan/LBG small diameter gel beads. However, 17 h fermentation of LBS medium with immobilized cells resulted in substantial softening of the gel matrix, prohibiting reuse of immobilized biocatalysts as inoculum in subsequent batch fermentation. A dynamic shear rheological study showed that the gel weakness was related to chemical interactions with the medium. Results indicated that part of the matrix-stabilizing K+ ions diffused back to the medium. Stabilization of the gel was obtained by adding potassium ions to the LBS medium;L. casei growth was not altered by this supplementation. Fermentation of LBS medium supplemented with KCl byL. casei showed higher cell counts in the broth medium with immobilized cells than with free cells, reaching 1010 cells/ml after about 10 h with entrapped cells in 0.5–1.0 mm diameter beads and 17 h with free cells. Counts in the gel beads after fermentation were higher than 1011 cells/ml and bead integrity was maintained throughout fermentation.  相似文献   

11.
Two separate 4 (bacterial concentrations)×6 (yeast concentrations) full factorial experiments were conducted in an attempt to identify a novel approach to minimize the effects caused by bacterial contamination during industrial production of ethanol from corn. Lactobacillus plantarum and Lactobacillus paracasei, commonly occurring bacterial contaminants in ethanol plants, were used in separate fermentation experiments conducted in duplicate using an industrial strain of Saccharomyces cerevisiae, Allyeast Superstart. Bacterial concentrations were 0, 1×106, 1×107 and 1×108 cells/ml mash. Yeast concentrations were 0, 1×106, 1×107, 2×107, 3×107, and 4×107 cells/ml mash. An increased yeast inoculation rate of 3×107 cells/ml resulted in a greater than 80% decrease (P<0.001) and a greater than 55% decrease (P<0.001) in lactic acid production by L. plantarum and L. paracasei, respectively, when mash was infected with 1×108 lactobacilli/ml. No differences (P>0.25) were observed in the final ethanol concentration produced by yeast at any of the inoculation rates studied, in the absence of lactobacilli. However, when the mash was infected with 1×107 or 1×108 lactobacilli/ml, a reduction of 0.7–0.9% v/v (P<0.005) and a reduction of 0.4–0.6% v/v (P<0.005) in the final ethanol produced was observed in mashes inoculated with 1×106 and 1×107 yeast cells/ml, respectively. At higher yeast inoculation rates of 3×107 or 4×107 cells/ml, no differences (P>0.35) were observed in the final ethanol produced even when the mash was infected with 1×108 lactobacilli/ml. The increase in ethanol corresponded to the reduction in lactic acid production by lactobacilli. This suggests that using an inoculation rate of 3×107 yeast cells/ml reduces the growth and metabolism of contaminating lactic bacteria significantly, which results in reduced lactic acid production and a concomitant increase in ethanol production by yeast.  相似文献   

12.
In this work, metabolite and antibody production kinetics of hybridoma cultures were investigated as a function of cell density and growth rate in a homogeneous perfusion reactor. Hydrophilized hollow fiber polypropylene membranes with a pore size of 0.2 m were used for medium perfusion. Oxygen was supplied to the cells through thin walled silicone tubing. The mouse-mouse hybridoma cells were grown in three identical bioreactors at perfusion rates of 1.1, 2.0, and 3.2/day for a period of eight days during which the viable cell concentrations reached stable values of 2.6×106, 3.5×106, and 5.2×106 cells/ml, respectively. Total cell densities reached values ranging from 8×106 to 1×106 cells/ml. Specific substrate consumption and product formation rates responded differently to changes in cell density and apparent specific growth rate, which were not varied independently. Using multiple regression analysis, the specific glucose consumption rate was found to vary with viable cell density while the specific glutamine uptake and lactate production rates varied with both viable cell density and apparent specific growth rate. These results suggest that cell density dictates the rate of glucose consumption while the cell growth rate influences how glucose is metabolized, i.e., through glycolysis or the TCA cycle. The specific antibody production rate was found to be a strong function of cell density, increasing as cell density increased, but was essentially independent of the specific growth rate for the cell line under study.List of Symbols MAb monoclonal antibody - X v viable cell density (cells/ml) - X d nonviable cell density (cells/ml) - specific growth rate (1/day) - k d specific death rate (1/day) - D dilution rate (1/day) - S f substrate concentration in feed (g/l or mM) - S substrate concentration (g/l or mM) - P f product concentration in feed (g/l or g/ml) - P product concentration (g/l or ug/ml) - q s specific consumption rate of substrate (g/hr/cell or mmol/hr/cell) - q p specific production rate of product (g/hr/cell) - q MAb specific production rate of monoclonal antibody (g/hr/cell) This work was supported in part by a grant for the National Science Foundation (BCS-9157851) and by matching funds from Merck and Monsanto. We sincerely thank Mr. Roland Buchele of Akzo Inc. (Germany) for donation of the polypropylene membranes, Dr. Michael Fanger (Dartmouth Medical School) for the hybridoma cell line, Dr. Sadettin Ozturk (Verax Corp., Lebanon, NH) for technical discussions regarding reactor design, and Dr. Derrick Rollins (Iowa State University) for advice on statistical methods.  相似文献   

13.
Escherichia coli B/pTG201 recombinant cells were immobilized by entrapment in a carrageenan gel and cultivated in nonselective media to investigate the effect of agitation rate on plasmid stability, biomass concentration, and enzyme productivity. These parameters were studied in continuous cultures for free and immobilized cells, respectively. Immobilized recombinant cells exhibit an increase in the stability of the plasmid pTG201 compared to free cells, even under conditions where the tendency of plasmid stability for free cells decreased generally more rapidly under a higher agitation rate. Intensive agitation, resulting also in a strong shear stress, greatly reduced cell concentration within gel beads throughout the course of growth. Higher enzyme expression of catechol 2–3, dioxygenase was also obtained in leaked cells due to better maintenance of plasmid stability and higher plasmid copy number with regard to free cells. Enzyme productivity of leaked and free cells in minimal medium decreased with the increase in agitation rate, due to decreased plasmid stability; however, in LB medium, it increased in the presence of higher agitation rate related to important cell concentration.  相似文献   

14.
The maintenance of the plasmid vectors pTG201 and pTG206 (which both carry the Pseudomonas putida xylE gene) and pB lambda H3 in Escherichia coli hosts was studied in free and immobilized continuous cultures. pTG201, containing the strong lambda PR promoter, was more quickly lost than plasmid pTG206, containing the tetracycline resistance gene promoter. The instability of pTG201 seems to be related to high expression of the cloned xylE genet. Fluctuations in the proportion of pTG201-containing cells were observed in the free system, suggesting the appearance of adaptive descendants (with and without plasmid) from the initial strains. The loss of plasmid vectors from E. coli cells and the fluctuations in the proportion of plasmid-containing cells could be prevented by immobilizing plasmid-containing bacteria in carrageenan gel beads.  相似文献   

15.
Summary Cells of Escherichia coli K12, carrying the recombinant plasmid pTG201, were immobilized in -carrageenan gel in order to improve the following plasmid parameters: (i) maintenance of a high level of plasmid copy number, (ii) good plasmid stability and (iii) good expression of plasmid encoded gene. The experiments were carried out on LB medium without antibiotic selection in continuous and batch cultures supplied with air or pure oxygen. Parallel experiments with free cells were also performed. In all the cases immobilized cells presented better plasmid stability parameters than free cells. Best results were obtained with immobilized cells supplied with pure oxygen. In this case, an average plasmid copy number of 60 and a value of plasmid-carrying cells close to 100% were maintained with little change during more than 200 generations. In addition, an optical microscopy analysis is proposed to allow the quantitation of cell growth in gel beads.  相似文献   

16.
Protein production capabilities ofTrichpolusia ni (TN 368) cells andSpodoptera frugiperda (Sf9) cells were compared in GTC100 medium in suspension culture using as a vector a genetically engineeredAutographa californica nuclear polyhedrosis virus. TN 368 produces more -galactosidase than Sf9, on a per cell basis (2.2×105 and 1.7×105 units/ 106 cells1 respectively). In growth experiments serum-free medium supported a higher maximum Sf9 cell density (4±1×106 cells/ml) than the serum- based media (1.5±5×106 cells/ml in GTC100 and 2±1×106 cells/ml in TNM-FH). However, using a cell density of 5×05 cells/ml, the productivity per cell varied, from a low of 4.5×104 units in EX-CELL-400 medium to a high of 7.6×104 units in TNM-FH. The TN 368 cells were twice a large as Sf9 cells and appeared to be more shear sensitive than Sf9 cells.  相似文献   

17.
It proves that a purifed Anti-Microbial Factor (AMF) from human promyelocytes has strong activity on Gram(–) and Gram(+) bacteria, showing 0.5 (g/ml) of Minimal Bacterical Concentration (MBC) on bothE. coli andS. aureus. For mass production of AMF, chemostat cultivation is recommended to accumulate cells out of the reactor since it is an intracellular protein and its system requires only 1% serum in the medium. Its production process proves to be closely growth-related. 1.7×10–8 (g/viable cell/day) of maximum specific AMF production rate is estimated at 0.026 h–1 of dilution rate, maintaining 6×106 (viable cell/ml). Ca. 300 (mg/ml) of crude AMF can be obtained for 50 days of continuous cultivation under optimal conditions. The cell growth reaches relatively fast steady state.  相似文献   

18.
Summary Hybridoma cells producing anti--amylase monoclonal antibody were entrapped in calcium alginate and the gels were then coated with urethane polymer. The urethane coating improved gel strength and prevented cell leakage. This immobilization method enabled direct air bubbling in the serum-free medium and a very high cell concentration (3×107 cells/ml gel) was obtained. By using a fluidized-bed reactor, effective removal of the medium in addition to sufficient oxygen supply could be achieved without any special devices and a very high concentration of the monoclonal antibody was continuously obtained.  相似文献   

19.
Twenty-six trichothecene mycotoxins produced by Fusarium sporotrichioides (MC-72083) and Fusarium sambucinum were screened for relative cytotoxicity in cultured baby hamster kidney (BHK-21) cells. The relative cytotoxicity was measured as LC100. The most cytotoxic trichothecenes were T-2 toxin (5 ng/ml) and the recently isolated 4-propanoyl HT-2 (5 ng/ml) and 3-hydroxy T-2 toxin (5 ng/ml). T-2 tetraol (1 × 104 ng/ml), 8--hydroxytrichothecene (1 × 104 ng/ml), sporotrichiol (2 × 104 ng/ml), 8-oxodiacetoxyscirpenol (6 × 104 ng/ml) and 8-acetyl T-2 tetraol (1 × 105 ng/ml) were the least toxic of the regular trichothecenes. None of the modified trichothecenes or the apotrichothecene were very cytotoxic: 8--hydroxysambucoin (2 × 103 ng/ml), FS-1 (5 × 103 ng/ml), 8--hydroxysambucoin (8 × 104 ng/ml) and trichotriol (1 × 105 ng/ml). The modified trichothecenes, FS-2 and FS-3, were not toxic even at 1 × 105 ng/ml. The baby hamster kidney cell bioassay proved to be a very sensitive and reproducible means of screening new trichothecene mycotoxins for relative cytotoxicity.  相似文献   

20.
Constructive improvement of the ultrasonic separation device ADI 1015   总被引:2,自引:0,他引:2  
O.-W. Merten 《Cytotechnology》2000,34(1-2):175-179
The use of the ultrasonic separation deviceis a very important step in the direction forimproving animal cell bioreactor cultures. However,the normal construction of the ultrasonic separationdevice ADI 1015 has an inherent disadvantage inpumping the cell suspension continuously through thedevice by using a peristaltic pump. The cells aretaken out of the reactor and are transported to theside inlet located below the separation chamber of thedevice. This cycling leads to cell death and aconsiderable reduction of the viable cell density. Themodification of the configuration of the device (nocirculation of the cell suspension through theretention device; during approximately 9 minutescell-free supernatant is extracted; every 9 minute forabout one minute, the volume which is equivalent tothe interior volume of the chamber and the tubingconnecting the device to the reactor, is flushed backin order to return the retained cells back to thereactor) allows cell densities from 106 to2.7 × 106 c/ml with a viability of at least90% (tested for the shear sensitive insect cell lineHigh Five), whereas the maximal cell densitiesobtained were 0.76 × 106 c/ml for the periodof continuous culture and 105 c/ml at the end ofthe use of the device in the classical mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号