首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytidine in the anticodon second position (position 35) and G or U in position 36 of tRNAArg are required for aminoacylation by arginyl-tRNA synthetase (ArgRS) from Escherichia coli. Nevertheless, an arginine-accepting amber suppressor tRNA with a CUA anticodon (FTOR1Delta26) exhibits suppression activity in vivo [McClain, W.H. & Foss, K. (1988) Science, 241, 1804-1807]. By an in vitro kinetic study with mutagenized tRNAs, we showed that the arginylation of FTOR1Delta26 involves C34 and U35, and that U35 can be replaced by G without affecting the activity. Thus, the positioning of the essential nucleotides for the arginylation is shifted to the 5' side, by one residue, in the suppressor tRNAArg. We found that the shifted positioning does not depend on the tRNA sequence outside the anticodon. Furthermore, by a genetic method, we isolated a mutant ArgRS that aminoacylates FTOR1Delta26 more efficiently than the wild-type ArgRS. The isolated mutant has mutations at two nonsurface amino-acid residues that interact with each other near the anticodon-binding site.  相似文献   

2.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Phe-tRNAPhe+Y and N-acetyl-Phe-tRNAPhe+Y from yeast interact with prokaryotic 30S subunits and 70S ribosomes with slightly lower affinity than respective tRNA's of E. coli (decrease of standard free energy change of interaction less than 10%). The removal of Y-base from Phe-tRNAPhe+Y results in two orders of magnitude decrease of association constant of Phe-tRNAPh-Ye with P site of the 30S X poly(U) complex and one ordef of magnitude or more of that with A site. The same modification decreases the association constants of Phe-tRNAPhe-Y and N-acetyl-Phe-tRNAPhe-Y 60 and 15 times respectively with P site of the 70S X poly(U) complex. In the absence of poly(U) the affinity of N-acetyl-Phe-tRNAPhe-Y to P-site of 70S ribosome was 20-fold lower than that of native N-acetyl-Phe-tRNAPhe+Y. The sign of interaction enthalpy of N-acetyl-Phe-tRNAPhe+/-Y and Phe-tRNAPhe-Y changes below 6-7 degrees C exposing the hydrophobic part of P-site interactions. Similar removal of Y-base does not change both the enthalpy of interaction with P-site and magnesium concentration dependence.  相似文献   

5.
We report the genetic mapping of pheU , an Escherichia coli gene for phenylalanine tRNA. This gene was located near 94.5 min on the E. coli map. There are no other known tRNA or ribosomal genes in its immediate vicinity.  相似文献   

6.
Soderberg T  Poulter CD 《Biochemistry》2000,39(21):6546-6553
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the alkylation of the exocyclic amine of A37 by a dimethylallyl unit in tRNAs with an adenosine in the third anticodon position (position 36). By use of purified recombinant enzyme, steady- state kinetic studies were conducted with chemically synthesized RNA oligoribonucleotides to determine the essential elements within the tRNA anticodon stem-loop structure required for recognition by the enzyme. A 17-base oligoribonucleotide corresponding to the anticodon stem-loop of E. coli tRNA(Phe) formed a stem-loop minihelix (minihelix(Phe)) when annealed rapidly on ice, while the same molecule formed a duplex structure with a central loop when annealed slowly at higher concentrations. Both the minihelix and duplex structures gave k(cat)s similar to that for the normal substrate (full-length tRNA(Phe) unmodified at A37), although the K(m) for minihelix(Phe) was approximately 180-fold higher than full-length tRNA. The A36-A37-A38 motif, which is completely conserved in tRNAs modified by the enzyme, was found to be important for modification. Changing A36 to G in the minihelix resulted in a 260-fold reduction in k(cat) compared to minihelix(Phe) and a 13-fold increase in K(m). An A38G variant was modified with a 9-fold reduction in k(cat) and a 5-fold increase in K(m). A random coil 17-base oligoribonucleotide in which the loop sequence of E. coli tRNA(Phe) was preserved, but the 5 base pair helix stem was completely disrupted and showed no measurable activity, indicating that a helix-loop structure is essential for recognition. Finally, altering the identity of several base pairs in the helical stem did not have a major effect on catalytic efficiency, suggesting that the enzyme does not make base-specific contacts important for binding or catalysis in this region.  相似文献   

7.
8.
A minor species of isoleucine tRNA (tRNA(minor Ile)) specific to the codon AUA has been isolated from Escherichia coli B and a modified nucleoside N+ has been found in the first position of the anticodon (Harada, F., and Nishimura, S. (1974) Biochemistry 13, 300-307). In the present study, tRNA(minor Ile)) was purified from E. coli A19, and nucleoside N+ was prepared, by high-performance liquid chromatography, in an amount (0.6) A260 units) sufficient for the determination of chemical structures. By 400 MHz 1H NMR analysis, nucleoside N+ was found to have a pyrimidine moiety and a lysine moiety, the epsilon amino group of which was involved in the linkage between these two moieties. From the NMR analysis together with mass spectrometry, the structure of nucleoside N+ was determined as 4-amino-2-(N6-lysino)-1-(beta-D-ribofuranosyl)pyrimidinium ("lysidine"), which was confirmed by chemical synthesis. Lysidine is a novel type of modified cytidine with a lysine moiety and has one positive charge. Probably because of such a unique structure, lysidine in the first position of anticodon recognizes adenosine but not guanosine in the third position of codon.  相似文献   

9.
D Smith  L Breeden  E Farrell    M Yarus 《Nucleic acids research》1987,15(11):4669-4686
We employed two methods to study the translational role of interactions between anticodon loop nucleotides. Starting with a set of previously constructed weakly-suppressing anticodon loop mutants of Su7, we searched for second-site revertants that increase amber suppressor efficiency. Though hundreds of revertants were characterized, no second-site revertants were found in the anticodon loop. Second site reversion was detected in the D-stem, thereby demonstrating the efficacy of the search method. As a second method for detecting interactions, we used site-directed mutagenesis to construct multiple mutations in the anticodon loop. These multiple mutants are very weak suppressors and have translational activities that are equal to or lower than that predicted for the independent action of single mutations. We conclude that although the anticodon loop sequence of Su7 has an optimal structure for the translation of amber codons, we find no evidence that interactions between loop bases can enhance translational efficiency.  相似文献   

10.
11.
Two analogs of the anticodon arm of yeast tRNAPhe (residues 28-43), in which G43 was replaced by the photoreactive nucleosides 2-azidoadenosine and 8-azidoadenosine, have been used to create 'zero-length' cross-links to ribosomal components at the peptidyl-tRNA binding site (P site) of 30 S subunits from the Escherichia coli ribosome. To prepare the analogs, 2-azidoadenosine and 8-azidoadenosine bisphosphates were first ligated to the 3' end of the anticodon-containing dodecanucleotide ACmUGmAAYA psi m5CUG from yeast tRNAPhe. The trinucleotide CAG was then joined to the 5' end of the resulting tridecanucleotide in a subsequent ligation. Both analogs bound to poly(U)-programmed 30 S subunits with affinities similar to that of the unmodified anticodon arm from yeast tRNAPhe. Irradiation of noncovalent complexes containing the photolabile analogs, poly(U) and 30 S ribosomal subunits with 300 nm light led to the covalent attachment of the anticodon arms to proteins S13 and S19. Further analysis revealed that S13 accounted for about 80%, and S19 for about 20%, of the cross-linked material. Labeling of these two proteins with 'zero-length' cross-linking probes provides useful information about the location and orientation of P site-bound tRNA on the ribosome and permits a test of recently proposed models of the three-dimensional structure of the 30 S subunit.  相似文献   

12.
13.
A modified uridine in the anticodon of E. coli tRNA I Tyr su + oc.   总被引:5,自引:1,他引:4       下载免费PDF全文
The anticodon of an ochre-suppressing derivative of E. coli tRNA I Tyr, previously identified as UUA, can contain a modified uridine (U+) in the first position. The novel modified nucleotide has been identified by two-dimensional thin layer chromatography following RNase T2 digestion of anticodon-containing fragments. Up+ is found in less than stoichiometric molar yields in preparations of tRNA I Tyr su + oc. The electrophoretic mobility of Up+ is the same as Up at pH 3.5 and pH 7.5. U+ probably does not contain sulfur since it cannot be labeled with 35S in vivo incorporation experiments.  相似文献   

14.
Su9 of Escherichia coli differs from tRNATrp by only a G to A transition in the D arm, yet has an enhanced ability to translate UGA by an unusual C X A wobble pairing. In order to examine the effects of this mutation on translation of the complementary and wobble codons in vivo, we constructed the gene for an amber (UAG) suppressing variant of Su9, trpT179, by making the additional nucleotide change required for an amber suppressor anticodon. The resultant suppressor tRNA, Su79, is a very strong amber suppressor. Furthermore, the D arm mutation enables Su79 to suppress ochre (UAA) codons by C X A wobble pairing. These data demonstrate that the effect of the D arm mutation on wobble pairing is not restricted to a CCA anticodon. The effect extends to the CUA anticodon of Su79, thereby creating a new type of ochre suppressor. The new coding activity of Su79 cannot be explained by alterations in the level of aminoacylation, steady-state tRNA concentration, or nucleotide modification. The A24 mutation could permit unorthodox wobble pairings by generally enhancing tRNA efficiency at all codons or by altering codon specificity.  相似文献   

15.
16.
17.
18.
19.
20.
In bacteria, the free amino group of the methionylated initiator tRNA is specifically modified by the addition of a formyl group. The functional relevance of such a formylation for the initiation of translation is not yet precisely understood. Advantage was taken here of the availability of the fmt gene, encoding the Escherichia coli Met-tRNA(fMet) formyltransferase, to measure the influence of variations in the level of formyltransferase activity on the involvement of various mutant tRNA(fMet) and tRNA(mMet) species in either initiation or elongation in vivo. The data obtained established that formylation plays a dual role, firstly, by dictating tRNA(fMet) to engage in the initiation of translation, and secondly, by preventing the misappropriation of this tRNA by the elongation apparatus. The importance of formylation in the initiator identity of tRNA(fMet) was further shown by the demonstration that elongator tRNA(fMet) may be used in initiation and no longer in elongation, provided that it is mutated into a formylatable species and is given the three G.C base pairs characteristic of the anticodon stem of initiator tRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号