首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron microscopy shows that the lipoprotein dispersions formed from the interaction of negatively charged liposomes with bovine serum albumin contain closed, vesicu lar, multilamellar structures. Discontinuous density gradient studies indicate that the lipoprotein suspensions are vesicles in which bovine serum albumin homogenously associates with lipid. Low angle X-ray diffraction results show that all the systems, positively and negatively charged, with and without protein, have the characteristic lamellar structure observed in biological membranes. The lamellar spacing (bilayer plus water layer) of negatively charged liposomes without bovine serum albumin is 55 A. The same lamellar separation in the positively charged system is 108 A. The lamellar spacing corresponding to bilayer, water, and protein for the negatively charged lipoprotein system is 93 A while that for the positively charged lipoprotein system is 91 A. These dimensions suggest that a layer of protein one molecule thick is incorporated between the lamellae bound to the surface of the bilayer. Wide angle X-ray diffraction results indicate no major effect of the protein on the 4.1 A spacing, characteristic of hexagonal packing of the hydrocarbon chains. A classical light scattering technique is used to show that the lipoprotein systems are osmotically active. The solute permeability exhibited by these lipoprotein systems follows the sequence (glucose smaller than arabinose smaller than malonamide smaller than glycerol). K+ diffusion from negatively charged lipoprotein systems is greater than that found for positively charged lipoprotein systems.  相似文献   

2.
Kinetics of the interaction of hemin liposomes with heme binding proteins   总被引:1,自引:0,他引:1  
As a model for the transport of hemin across biological membranes, sonicated phosphatidylcholine liposomes with incorporated hemin were characterized. The interaction of the hemin liposomes with the heme binding proteins albumin, apomyoglobin, and hemopexin was examined as a function of liposome charge and cholesterol content. In all cases, there was an almost complete transfer of hemin from liposome to protein; a rapid phase and a slow phase were observed for the transfer. For negatively charged liposomes (with 11% dicetyl phosphate), the rapid and slow phases showed observed rates of transfer of ca. 2 and 0.01 s-1, respectively, for all three proteins. The presence of cholesterol in the liposomes decreased the observed rates by a factor of 2, and positively charged liposomes (with 11% stearylamine) showed about one-fifth the observed rates of negatively charged liposomes. The observed rates were independent of protein concentration, indicating that the rate-determining step is hemin efflux from the lipid bilayer. The hemin interaction with the phospholipid bilayer is suggested to be primarily hydrophobic with some electrostatic character. The two phases are suggested to arise from two different populations of hemin within the liposomes and are interpreted as arising from two different orientations of hemin within the bilayer.  相似文献   

3.
We have evaluated surface plasmon resonance with avidin-biotin immobilized liposomes tocharacterize membrane binding of ubiquitous mitochondrial creatine kinase (uMtCK). Whilethe sarcomeric sMtCK isoform is well known to bind to negatively charged phospholipids,especially cardiolipin, this report provides the first experimental evidence on the membraneinteraction of an uMtCK isoform. Qualitative measurements showed that liposomes containing16% (w/w) cardiolipin bind octameric as well as dimeric human uMtCK and also cytochromec, but not bovine serum albumin. Quantitative parameters could be derived only for themembrane interaction of octameric human uMtCK using an improved analytical approach.Association and dissociation kinetics of octameric uMtCK fit well to a model for heterogeneousinteraction suggesting two independent binding sites. Rate constants of the two sites differedby one order of magnitude, while their affinity constants were both about 80–100 nM. Thedata obtained demonstrate that surface plasmon resonance with immobilized liposomes is asuitable approach to characterize the binding of peripheral proteins to a lipid bilayer and thatthis method yields consistent quantitative binding parameters.  相似文献   

4.
We studied the interaction of large unilamellar liposomes carrying different surface charges with rat Kupffer cells in maintenance culture. In addition to 14C-labeled phosphatidylcholine, all liposome preparations contained either 3H-labeled inulin or 125I-labeled bovine serum albumin as a non-degradable or a degradable aqueous space marker, respectively. With vesicles carrying no net charge, intracellular processing of internalized liposomes caused nearly complete release of protein label into the medium in acid-soluble form, while phospholipid label was predominantly retained by the cells, only about one third being released. The presence of the lysosomotropic agent, ammonia, inhibited the release of both labels from the cells. At 4 degrees C, the association and degradation of the vesicles were strongly reduced. These results are very similar to what we reported on negatively charged liposomes (Dijkstra, J., Van Galen, W.J.M., Hulstaert, C.E., Kalicharan, D., Roerdink, F.H. and Scherphof, G.L. (1984) Exp. Cell Res. 150, 161-176). The interaction of both types of vesicles apparently proceeds by adsorption to the cell surface followed by virtually complete internalization by endocytosis. Similar experiments with positively charged vesicles indicated that only about half of the liposomes were taken up by the endocytic route, the other half remaining adsorbed to the cell-surface. Attachment of all types of liposomes to the cells was strongly dependent on the presence of divalent cations; Ca2+ appeared to be required for optimal binding. Neutral liposomes only slightly competed with the uptake of negatively charged vesicles, both at 4 degrees and 37 degrees C, whereas negatively charged small unilamellar vesicles and negatively charged latex beads were found to compete very effectively with the large negatively charged liposomes. Neutral vesicles competed effectively for uptake with positively charged ones. These results suggest that neutral and positively charged liposomes are largely bound by the same cell-surface binding sites, while negatively charged vesicles attach mainly to other binding sites.  相似文献   

5.
In this study, we have investigated the protein/lipid interactions of two mitochondrial precursor proteins, apocytochrome c and pCOX IV-DHFR, which exhibit mitochondrial import pathways with different characteristics. In-vitro-synthesized apocytochrome c was found to bind efficiently and specifically to liposomes composed of negatively charged phospholipids and showed a (at least partial) translocation across a lipid bilayer, as reported previously for the chemically prepared precursor protein [Rietveld, A. & de Kruijff, B. (1984) J. Biol. Chem. 259, 6704-6707; Dumont, M. E. & Richards, F. M. (1984) J. Biol. Chem. 259, 4147-4156]. Negatively charged liposomes were shown to efficiently compete with mitochondria for import of in-vitro-synthesized apocytochrome c into the organelle, suggesting an important role for negatively charged phospholipids in the initial binding of apocytochrome c to mitochondria. In contrast, the purified and in-vitro-synthesized precursor fusion protein pCOX IV-DHFR, consisting of the presequence of yeast cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase was unable to translocate across a pure lipid bilayer. The data indicate that the ability of apocytochrome c to spontaneously translocate across the bilayer is not shared by all mitochondrial precursor proteins. The implications of the special protein/lipid interaction of apocytochrome c for import into mitochondria will be discussed.  相似文献   

6.
The structural effect of the presequence of cytochrome oxidase subunit IV (p25) on multilamellar liposomes with different lipid compositions has been investigated using X-ray diffraction and electron microscopy. The presequence causes the disordering of the liposomes containing negatively charged lipids, without destabilizing the bilayer structure or destroying the multilamellar nature of the liposomes. In the systems containing only zwitterionic lipids, a small increase in the d-spacing (lamellar stacking spacing) is observed without any disorder effect suggesting a weaker interaction of the peptide and lipid. Circular Dichroism measurements of the peptide, in the presence and absence of the different lipid systems studied, show that the secondary structure of the peptide is modulated by the lipid environment. Considerable amounts of -helix in the presequence is only observed in the systems containing negatively charged lipids. These are the same systems for which the disordering effect is observed with X-ray diffraction. It is proposed that p25 disorders the bilayer stacking by corrugating the membranes. The results are discussed in terms of the relevance of the specific lipid properties (e.g., electric charge and ability to form inverted phases) in determining how the peptide interacts with the lipid and affects its structural organization. It is suggested that the lipid properties relevant for the disordering effect induced by the peptide are the same as those involved in the formation of contact sites between mitochondrial membranes during the import of nuclear coded proteins.  相似文献   

7.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

8.
We have investigated the membrane destabilizing properties of synthetic amphiphilic cationic peptides, MAX1 and MAX35, which have the propensity to form β-hairpin structures under certain conditions, and a control non-β-hairpin-forming peptide MAX8V16E. All three peptides bind to liposomes containing a mixture of zwitterionic POPC and negatively charged POPS lipids as determined by Zeta potential measurements. Circular dichroism measurements indicated folding of MAX1 and MAX35 in the presence of the POPC/POPS liposomes, whereas no such folding was observed with MAX8V16E. There was no binding or folding of these peptides to liposomes containing only POPC. MAX1 and MAX35 induced release of contents from negatively charged liposomes, whereas MAX8V16E failed to promote solute release under identical conditions. Thus, MAX1 and MAX35 bind to, and fold at the surface of negatively charged liposomes adopting a lytic conformation. We ruled out leaky fusion as a mechanism of release by including 2 mol % PEG-PE in the liposomes, which inhibits aggregation/fusion but not folding of MAX or MAX-induced leakage. Using a concentration-dependent quenching probe (calcein), we determined that MAX-induced leakage of liposome contents was an all-or-none process. At MAX1 concentrations, which cause release of ∼50% of the liposomes that contain small (Rh <1.5 nm) markers, only ∼15% of those liposomes release a fluorescent dextran of 40 kDa. A multimeric model of the pore is presented based on these results. Atomistic molecular dynamics simulations show that barrels consisting of 10 β-hairpin MAX1 and MAX35 peptides are relatively more stable than MAX8V16E barrels in the bilayer, suggesting that barrels of this size are responsible for the peptides lytic action.  相似文献   

9.
We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments.  相似文献   

10.
Small unilamellar neutral, negatively and positively charged liposomes composed of egg phosphatidylcholine, various amounts of cholesterol and, when appropriate, phosphatidic acid or stearylamine and containing 6-carboxyfluorescein were injected into mice, incubated with mouse whole blood, plasma or serum or stored at 4°C. Liposomal stability, i.e. the extent to which 6-carboxyfluorescein is retained by liposomes, was dependent on their cholesterol content. (1) Cholesterol-rich (egg phosphatidylcholine/cholesterol, 7:7 molar ratio) liposomes, regardless of surface charge, remained stable in the blood of intravenously injected animals for up to at least 400min. In addition, stability of cholesterol-rich liposomes was largely maintained in vitro in the presence of whole blood, plasma or serum for at least 90min. (2) Cholesterol-poor (egg phosphatidylcholine/cholesterol, 7:2 molar ratio) or cholesterol-free (egg phosphatidylcholine) liposomes lost very rapidly (at most within 2min) much of their stability after intravenous injection or upon contact with whole blood, plasma or serum. Whole blood and to some extent plasma were less detrimental to stability than was serum. (3) After intraperitoneal injection, neutral cholesterol-rich liposomes survived in the peritoneal cavity to enter the blood circulation in their intact form. Liposomes injected intramuscularly also entered the circulation, although with somewhat diminished stability. (4) Stability of neutral and negatively charged cholesterol-rich liposomes stored at 4°C was maintained for several days, and by 53 days it had declined only moderately. Stored liposomes retained their unilamellar structure and their ability to remain stable in the blood after intravenous injection. (5) Control of liposomal stability by adjusting their cholesterol content may help in the design of liposomes for effective use in biological systems in vivo and in vitro.  相似文献   

11.
Liposomes as a lipid-based system have been shown to be an effective adjuvant formulation. In this study, the role of liposome charge in induction of a Th1 type of immune response and protection against leishmaniasis in BALB/c mice was studied. Liposomes containing rgp63 were prepared by Dehydration-Rehydration Vesicle (DRV) method. Neutral liposomes consisted of dipalmitoylphosphatidylcholine and cholesterol. Positively and negatively charged liposomes were prepared by adding dimethyldioctadecylammonium bromide (DDAB) or dicetyl phosphate (DCP) to the neutral liposome formulation, respectively. Female BALB/c mice were immunized subcutaneously with negatively, positively charged or neutral liposomes encapsulated with rgp63, rgp63 in soluble form or PBS, three times in 3 week intervals. The extent of protection and type of immune response generated were studied in different groups of mice. The group of mice immunized with rgp63 encapsulated in neutral liposomes showed a significantly (P < 0.01) smaller footpad swelling upon challenge with Leishmania major compared with positively or negatively charged liposomes. The mice immunized with neutral liposomes also showed a significantly (P < 0.01) the lowest splenic parasite burden, the highest IgG2a/IgG1 ratio and IFN-γ production and the lowest IL-4 level compared to the other groups. The results indicated that a Th1 type of immune response was induced in mice immunized with neutral liposomes more efficiently than positively charged liposomes and conversely negatively charged liposomes induced a Th2 type of immune response.  相似文献   

12.
Intranasal administration of calcitonin-containing liposomes in rabbits was investigated to evaluate the in vivo calcitonin absorption performance. Plasma calcitonin concentrations and calcium levels were measured and pharmacokinetic parameters were calculated. The bioavailability of calcitonin resulted from the intranasal delivery formulations demonstrated an order of calcitonin-containing positively charged liposomes > calcitonin-containing negatively charged liposomes > calcitonin solution. The significant enhancement of bioavailability of calcitonin for positively charged liposomes may be due to the charge interaction of positively charged liposomes with the negatively charged mucosa surface. Marked accumulation of positively charged liposomes was found on the negatively charged nasal mucosa surface. The retention of positively charged liposomes on the nasal mucosa resulted in an increase of residence time with high local concentration of calcitonin for increase of absorption.  相似文献   

13.
S J Comiskey  T D Heath 《Biochemistry》1990,29(15):3626-3631
An enzyme inhibition assay was developed to determine methotrexate-gamma-aspartate leakage from liposomes at lipid concentrations as low as 43 nM phospholipid. When negatively charged liposomes prepared with phosphatidylglycerol/cholesterol 67:33 or phosphatidylinositol/cholesterol 67:33 were incubated in 10% (v/v) newborn calf serum, they leaked over 90% of their contents in 2 min. In contrast, liposomes prepared from phosphatidylcholine/cholesterol 67:33 leaked 18% of their contents under the same conditions. The amount of negative charge required to induce liposome leakage was determined by preparing liposomes with varying amounts of phosphatidylglycerol and phosphatidylcholine. Extensive leakage was observed only from liposomes prepared with greater than 50 mol of phosphatidylglycerol per 100 mol of phospholipid. The effect of the phase transition temperature on leakage of negatively charged liposomes in 10% (v/v) serum was investigated by using a series of phosphatidylglycerols with varying acyl chain lengths. Liposomes prepared from distearoylphosphatidylglycerol or dipalmitoylphosphatidylglycerol leaked less than 18% of their contents in 10% serum, whereas liposomes prepared with dilauroylphosphatidylglycerol or unsaturated lipids leaked more than 70% of their contents. Lipoprotein removal from serum followed by treatment with lipid to remove residual apoproteins reduced the leakage from phosphatidylglycerol liposomes in 10% serum. Phosphatidylglycerol liposomes leaked 73% in the presence of human low-density lipoproteins, but only 29% in the presence of bovine apolipoprotein A-I, and 25% in the presence of human high-density lipoproteins. Phosphatidylglycerol/cholesterol and phosphatidylserine/cholesterol liposomes leaked 67% in 4 mg/mL bovine serum albumin purified by cold ethanol extraction. The leakage of liposomes in albumin solutions could be substantially reduced by treating the albumin with lipid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Intravenous injection of negatively charged liposomes containing entrapped poly(I) · poly(C) induced a vigorous interferon response in mice with serum titers of interferon reaching twenty times those observed with comparable dosages of free poly(I) · poly(C). The response did not persist over an extended time period as was observed earlier for enhanced interferon production stimulated by positively charged liposomes containing the inducer. Both negatively and positively charged liposomes containing [14C]poly(I) · poly(C) were taken up chiefly by the liver when given intravenously. Negatively charged particles were concentrated somewhat preferentially by the spleen (7–9% of the dose compared to 4–6%). Less radioactivity was found in liver and spleen when negatively charged particles were given intraperitoneally than was the case when positively charged particles were injected by this route. Free [14C]poly(I) · poly(C) was extensively metabolized to low molecular weight materials within four hours of injection, while encapsulation of the polymer provided protection against in vivo degradation. When both preferential localization and protection were considered, from three to five times as much high molecular weight [14C]poly(I) · poly(C) was recovered from liver at four hours after intravenous injection when the compound was given in encapsulated form compared to the free polymer. Similarly, for spleen, seven times and three times as much polymeric [14C]poly(I) · poly(C) was recovered following injection of negatively charged liposomes and positively charged liposomes respectively compared to free [14C]poly(I) · poly(C). At 48 h after an intravenous injection of positively charged liposomes, as much as four percent of the dose remained in high molecular weight form in the liver and one percent in the spleen. Following intraperitoneal injections, polymeric [14C]poly(I) · poly(C) recovered from the liver never exceeded 4.3% of the dose, showing that most of the radioactivity in the liver consisted of metabolites. These results suggest that elevated and prolonged production of interferon in animals treated with encapsulated inducer results from a combination of factors including preferential tissue location and protection of the inducer from hydrolytic cleavage.  相似文献   

15.
Hemoglobin is encapsulated in liposomes of different lipid composition. The resulting dispersion consists primarily of multilamellar liposomes (hemosomes) of a wide particle size distribution (diameter ranging mainly between 0.1 and 1 micron). The encapsulation efficiency is significantly larger with liposomes containing negatively charged lipids as compared to liposomes made of phosphatidylcholine. The integrity of the phospholipid bilayer is maintained in the presence of hemoglobin. The reaction rate of CO binding to encapsulated hemoglobin is reduced compared to that of free hemoglobin, but it is still greater than that observed in red blood cells. Hemoglobin encapsulated in liposomes made from negatively charged phospholipids is less stable than hemoglobin entrapped in isoelectric phosphatidylcholine. The instability of hemoglobin is due to the protein interacting with the negatively charged lipid bilayer. This interaction leads in turn to hemoglobin denaturation, possibly involving the dissociation of the heme group from the heme-globin complex. The nature of the negatively charged phospholipid is important in promoting the interaction with hemoglobin, the effect being in the order phosphatidic acid greater than phosphatidylinositol congruent to phosphatidylglycerol greater than phosphatidylserine. The presence of equimolar amounts of cholesterol in the phospholipid bilayer has a stabilizing effect on hemoglobin. This effect is pronounced with saturated phospholipids, but it is also observed, though to a lesser extent, with unsaturated ones, indicating that the bilayer fluidity has a modulating effect. The presence of cholesterol possibly interferes with secondary interactions following the binding of hemoglobin to the negatively charged lipid bilayer.  相似文献   

16.
Second harmonic generation (SHG) was used to study both the adsorption of malachite green (MG), a positively charged organic dye, onto liposomes of different lipid compositions, and the transport kinetics of MG across the liposome bilayer in real time. We found that the dye adsorption increased linearly with the fraction of negatively charged lipids in the bilayer. Similarly, the transport rate constant for crossing the bilayer increased linearly with the fraction of charged lipid in the bilayer.  相似文献   

17.
The effects of cytochrome c and apocytochrome c on the structural properties of various membrane phospholipids in model systems were compared by binding, calorimetric, permeability, 31P n.m.r. and freeze-fracture experiments. Both cytochrome c and apocytochrome c experience strong interactions only with negatively charged phospholipids; apocytochrome c interacted more strongly than cytochrome c. These interactions are primarily electrostatic but also have a hydrophobic character. Cytochrome c as well as apocytochrome c induces changes in the structure of cardiolipin liposomes as is shown by 31P n.m.r. and freeze-fracture electron microscopy. Cytochrome c does not affect the bilayer structure of phosphatidylserine. In contrast, interaction of apocytochrome c with this phospholipid results in changes of the 31P n.m.r. bilayer spectrum of the liposomes and also particles are observed at the fracture faces. The results are discussed in relation to the import of the protein into the mitochondrion.  相似文献   

18.
Abstract

A series of positively charged phospholipid and cholesterol derivatives was synthesized and evaluated as membrane components for liposomes. Small unilamellar liposomes containing up to 40 mole% of the synthetic lipids were prepared by sonication. Selected liposome preparations containing these synthetic lipid materials were found to be noncytotoxic in vitro by using a cell growth inhibition assay, whereas liposomes containing more classic positively charged components (stearylamine and cetyltrimethylammonium bromide) showed considerable cytotoxicity. Using an unanesthetized rabbit eye model, we have found that inclusion of the positively charged lipid derivatives into the liposomes significantly enhanced the ocular retention compared to neutral or negatively charged liposomes, presumably by molecular association with poly anionic corneal and conjunctival surface mucoglycoproteins. the increased retention was dependent on charge density and rigidity of the lipid bilayer. An assay for primary amino groups in these liposomes suggested that the distribution of the charged molecules between the inner and outer leaflets of the bilayer could be manipulated by lipid composition. Studies of liposomes containing cholesteryl esters of amino acids of various carbon chain lengths indicated that the charged amino groups need to extend from the surface of the lipid bilayers for better adhesion and retention. the ocular surface was saturable with respect to applied liposomes, which were cleared slowly from the eye with a half-time of clearance of about 2 hr. these data suggest a specific adhesion of the cationic liposomes to the surface of mucosal tissues.  相似文献   

19.
20.
Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号