首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male-killing (MK) and cytoplasmic incompatibility (CI) inducing bacteria are among the most common endosymbionts of arthropods. Previous theoretical research has demonstrated that these two types of endosymbionts cannot stably coexist within a single unstructured host population if no doubly infected host individuals occur. Here, we analyse a model of two host subpopulations connected by migration. We demonstrate that coexistence of MK- and CI-inducing endosymbionts is possible if migration rates are sufficiently low. In particular, our results suggest that for coexistence to be possible, migration rates into the subpopulation infected predominantly with MK-inducing endosymbionts must be considerably low, while migration rates from the MK- to the CI-infected subpopulation can be very high. We also analyse how the presence of MK- and CI-inducing endosymbionts affects host gene flow between the two subpopulations. Employing the concept of the 'effective migration rate', we demonstrate that compared with an uninfected subdivided population, gene flow is increased towards the MK-infected island, but decreased towards the CI-infected island. We discuss our results with respect to the butterfly Hypolimnas bolina, in which infection polymorphism of CI- and MK-inducing Wolbachia has been reported across South-Pacific island populations.  相似文献   

2.
Multiple infection of individual hosts with several species or strains of maternally inherited endosymbionts is commonly observed in animals, especially insects. Here, we address theoretically the effect of co-infection on the optimal density of the endosymbionts in doubly infected hosts. Our analysis is based on the observation that a maternally inherited double infection is only stable if doubly infected females produce more doubly infected daughters than singly infected or uninfected females produce daughters. We consider both a general model and a model involving two endosymbionts inducing bidirectional cytoplasmic incompatibility (CI). We demonstrate that the optimal replication rate of endosymbionts in doubly infected hosts can be expected to be similar to or below the optimal replication rate in singly infected hosts. This is in contrast to some theoretical predictions for horizontally transmitted parasites and stems from the two strains of endosymbionts having coupled fitness. We discuss our results with respect to recent empirical results on endosymbiont densities, the evolution of CI-inducing bacteria and, more generally, the evolution of cooperation through direct fitness benefits.  相似文献   

3.
Male-killing bacteria are bacteria that are transmitted vertically through the females of their insect hosts. They can distort the sex ratio of their hosts by killing infected male offspring. In nature, male-killing endosymbionts (male killers) often have a 100% efficient vertical transmission, and multiple male-killing bacteria infecting a single population are observed. We use different model formalisms to study these observations. In mean-field models a male killer with perfect transmission drives the host population to extinction, and coexistence between multiple male killers within one population is impossible; however, in spatially explicit models, both phenomena are readily observed. We show how the spatial pattern formation underlies these results. In the case of high transmission efficiencies, waves with a high density of male killers alternate with waves of mainly wild-type hosts. The male killers cause local extinction, but this creates an opportunity for uninfected hosts to re-invade these areas. Spatial pattern formation also creates an opportunity for two male killers to coexist within one population: different strains create spatial regions that are qualitatively different; these areas then serve as different niches, making coexistence possible.  相似文献   

4.
Male-killing (MK) bacteria are vertically transmitted endosymbionts that selectively kill the male offspring of their hosts. Simple mathematical models describe the infection dynamics using two parameters, the bacterial transmission rate and a fitness compensation for siblings of killed males. These models cannot explain two phenomena that have been observed in nature: the persistence of extreme MK causing all-female broods, and the coexistence of two different strains of MK bacteria in the same host population. In the present study, we extend the simple MK models and investigate theoretically the effects of sibmating on the infection dynamics. We demonstrate analytically that, in general, sibmating reduces MK prevalence, and can even cause its extinction. As a special case of this finding, we show that sibmating allows a stable coexistence between no infection and extreme MK. Furthermore, we performed computer simulations and showed that, depending on male mating capacity, a stable coexistence of two strains is possible if sibmating occurs but is below a threshold. The results suggest that sibmating might be an important factor for understanding the infection dynamics of MK bacteria.  相似文献   

5.
In many arthropods, maternally inherited endosymbiotic bacteria can increase infection frequency by manipulating host reproduction. Multiple infections of different bacteria in a single host population are common, yet few studies have documented concurrent endosymbiont phenotypes or explored their potential interactions. We hypothesized that spiders might be a particularly useful taxon for investigating endosymbiont interactions, because they are host to a plethora of endosymbiotic bacteria and frequently exhibit multiple infections. We established two matrilines from the same population of the linyphiid spider Mermessus fradeorum and then used antibiotic curing and controlled mating assays to demonstrate that each matriline was subject to a distinct endosymbiotic reproductive manipulation. One matriline was co-infected with Rickettsia and Wolbachia and produced offspring with a radical female bias. Antibiotic treatment eliminated both endosymbionts and restored an even sex ratio to subsequent generations. Chromosomal and fecundity observations suggest a feminization mechanism. In the other matriline, a separate factorial mating assay of cured and infected spiders demonstrated strong cytoplasmic incompatibility (CI) induced by a different strain of Wolbachia. However, males with this Wolbachia induced only mild CI when mated with the RickettsiaWolbachia females. In a subsequent survey of a field population of M. fradeorum, we detected these same three endosymbionts infecting 55% of the spiders in almost all possible combinations, with nearly half of the infected spiders exhibiting multiple infection. Our results suggest that a dynamic network of endosymbionts may interact both within multiply infected hosts and within a population subject to multiple strong reproductive manipulations.  相似文献   

6.
Theory suggests that maternally inherited endosymbionts can promote their spread and persistence in host populations by enhancing the production of daughters by infected hosts, either by improving overall host fitness, or through reproductive manipulation. In the doubly infected parasitoid wasp Encarsia inaron, Wolbachia manipulates host reproduction through cytoplasmic incompatibility (CI), but Cardinium does not. We investigated the fitness costs and/or benefits of infection by each bacterium in differentially cured E. inaron as a potential explanation for persistence of Cardinium in this population. We introgressed lines infected with Wolbachia, Cardinium or both with the cured line to create a similar genetic background, and evaluated several parasitoid fitness parameters. We found that symbiont infection resulted in both fitness costs and benefits for E. inaron. The cost was lower initial egg load for all infected wasps. The benefit was increased survivorship, which in turn increased male production for wasps infected with only Cardinium. Female production was unaffected by symbiont infection; we therefore have not yet identified a causal fitness effect that can explain the persistence of Cardinium in the population. Interestingly, the Cardinium survivorship benefit was not evident when Wolbachia was also present in the host, and the reproduction of doubly infected individuals did not differ significantly from uninfected wasps. Therefore, the results of our study show that even when multiple infections seem to have no effect on a host, there may be a complex interaction of costs and benefits among symbionts.  相似文献   

7.
John Jaenike 《Oikos》2009,118(3):353-362
Many insect species are infected with maternally transmitted endosymbionts, the most widely documented being Wolbachia . The rate of spread and equilibrium of prevalence of these infections depend on two parameters – maternal transmission fidelity and relative fitness of infected cytoplasmic lineages. Both transmission fidelity and the phenotypic effect of endosymbionts often increase with endosymbiont density within hosts. Thus, the dynamics of infection prevalence in host populations depends on processes affecting within-host density of endosymbionts. In theory, the equilibrium prevalence of infection by male-killing endosymbionts is much more sensitive to changes in transmission fidelity and relative fitness than is that of endosymbionts that cause cytoplasmic incompatibility. In natural populations, male-killers exhibit much greater temporal and spatial variation in the prevalence of infection than do endosymbionts that cause cytoplasmic incompatibility. Thus, the population dynamics of endosymbiont infections, especially those that cause male-killing, is likely to be governed by environmental and genetic variables that affect within-host density of these infections.  相似文献   

8.
Asymmetric gene flow is generally believed to oppose natural selection and potentially impede adaptation. Whilst the cause of asymmetric gene flow has been seen largely in terms of variation in population density over space, asymmetric gene flow can also result from varying sex ratios across subpopulations with similar population sizes. We model the process of adaptation in a scenario in which two adjacent subpopulations have different sex ratios, associated with different levels of infection with maternally inherited endosymbionts that selectively kill male hosts. Two models are analyzed in detail. First, we consider one host locus with two alleles, each of which possesses a selective advantage in one of the subpopulations. We found that local adaptation can strongly be impeded in the subpopulation with the more female biased population sex ratio. Second, we analyze host alleles that provide resistance against the male-killing (MK) endosymbionts and show that asymmetric gene flow can prevent the spread of such alleles under certain conditions. These results might have important implications for the coevolution of MK bacteria and their hosts.  相似文献   

9.
Vertically transmitted symbionts suffer a severe reduction in numbers when they pass through host generations, resulting in genetic homogeneity or even clonality of their populations. Wolbachia endosymbionts that induce cytoplasmic incompatibility in their hosts depart from this rule, because cytoplasmic incompatibility actively maintains multiple infection within hosts. Hosts and symbionts are thus probably under peculiar selective pressures that must shape the way intracellular bacterial populations are regulated. We studied the density and location of Wolbachia within adult Leptopilina heterotoma, a haplodiploid wasp that is parasitic on Drosophila and that is naturally infected with three Wolbachia strains, but for which we also obtained one simply infected and two doubly infected lines. Comparison of these four lines by quantitative polymerase chain reaction using a real-time detection system showed that total Wolbachia density varies according to the infection status of individuals, while the specific density of each Wolbachia strain remains constant regardless of the presence of other strains. This suggests that Wolbachia strains do not compete with one another within the same host individual, and that a strain-specific regulatory mechanism is operating. We discuss the regulatory mechanisms that are involved, and how this process might have evolved as a response to selective pressures acting on both partners.  相似文献   

10.
We develop a structured metapopulation model for vertically transmitted symbionts in natural host populations. We focus primarily on two questions: Are mutualism and high transmission probability prerequisites for the survival of symbionts in structured host metapopulations? What are the ecological conditions under which coexistence of infected and uninfected hosts is possible? We start with studying in depth the case of qualitatively identical patches and derive conditions for invasion and coexistence of uninfected and infected hosts. Our model predicts that, in a qualitatively uniform environment, coexistence is possible only if the symbionts increase the fitness of their host, so the mutualism is indeed needed for coexistence. We also prove that evolution selects for 100% infection frequency in the metapopulation. Then we generalize the model for different patch qualities and get conditions for invasion in a virgin environment.  相似文献   

11.
Wolbachia和Cardinium都是广泛存在于节肢动物体内的一类母系遗传的共生细菌, 可以通过不同方式操纵寄主的生殖行为。Wolbachia和Cardinium感染同一寄主在自然界比较常见, 但是在某些可以同时感染Wolbachia和Cardinium的寄主中其单感染品系较难发现。本研究检测了云南文山(YN)、 海南三亚(HN)这2个不同地理种群中Wolbachia和Cardinium的感染情况; 以双感染Wolbachia和Cardinium的白背飞虱Sogatella furcifera海南种群为实验材料, 运用显微注射方法对双感染Wolbachia和Cardinium的白背飞虱若虫注射不同浓度青霉素G以获得单感染品系。结果表明: 白背飞虱自然种群中单感染Wolbachia比率极低, 本实验用到的海南种群未检测到单感染Wolbachia成虫; 通过显微注射青霉素G的方法可以从白背飞虱双感染品系中筛选获得单感染品系, 当青霉素G注射浓度为0.2%(w/v), 注射龄期为5龄时得到单感染品系效率最高; F5代的检测结果显示显微注射得到的单感染品系可以稳定遗传。本研究为获得单感染品系白背飞虱提供了快捷方法, 同时为其他双感染Wolbachia和Cardinium节肢动物不同感染品系的筛选提供参考。  相似文献   

12.
Wolbachia和Cardinium均为母系遗传的胞内共生菌, 它们能够通过诱导胞质不亲和(cytoplasmic incompatibility, CI)以调控寄主的生殖。目前, 关于Wolbachia和Cardinium共同对同一寄主进行生殖操控的机制还不清楚。本研究以皮氏叶螨Tetranychus piercei McGregor广州种群为实验材料, 通过杂交实验和荧光原位杂交的方法, 研究Wolbachia和Cardinium单感染和双感染对寄主生殖的影响。结果表明: 单感染Wolbachia诱导较弱的CI, 不亲和组合的未孵化率为17.8%±1.6%。单感染Cardinium及双感染Wolbachia和Cardinium能诱导高强度的CI, 不亲和组合的未孵化率分别为70.3%±1.3%和72.9%±1.2%。同时双感染Wolbachia和Cardinium雌螨的平均产卵量为35.2±1.2, 显著高于单感染和不感染的雌螨的产卵量。Wolbachia 和Cardinium分别诱导以及共同诱导CI的水平与精子形成过程中的感染情况有关。Wolbachia和Cardinium的垂直传播模式结果显示, 在卵的不同发育阶段, Wolbachia和Cardinium主要伴随着营养物质从滋养细胞、 中肠、 输卵管进入发育中的卵。研究结果为进一步了解 Wolbachia和Cardinium的母系遗传机制提供了重要依据。  相似文献   

13.
Epstein–Barr virus (EBV) infects and can persist in a majority of people worldwide. Within an infected host, EBV targets two major cell types, B cells and epithelial cells, and viruses emerging from one cell type preferentially infect the other. We use mathematical models to understand why EBV infects epithelial cells when B cells serve as a stable refuge for the virus and how switching between infecting each cell type affects virus persistence and shedding. We propose a mathematical model to describe the regulation of EBV infection within a host. This model is used to study the effects of parameter values on optimal viral strategies for transmission, persistence, and intrahost competition. Most often, the optimal strategy to maximize transmission is for viruses to infect epithelial cells, but the optimal strategy for maximizing intrahost competition is for viruses to mainly infect B cells. Applying the results of the within-host model, we derive a model of EBV dynamics in a homogeneous population of hosts that includes superinfection. We use this model to study the conditions necessary for invasion and coexistence of various viral strategies at the population level. When the importance of intrahost competition is weak, we show that coexistence of different strategies is possible.  相似文献   

14.
Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.Subject terms: Evolutionary genetics, Evolutionary ecology, Parasitology  相似文献   

15.
James AC  Dean MD  McMahon ME  Ballard JW 《Heredity》2002,88(3):182-189
The bacterial symbiont Wolbachia can cause cytoplasmic incompatibility in Drosophila simulans flies: if an infected male mates with an uninfected female, or a female with a different strain of Wolbachia, there can be a dramatic reduction in the number of viable eggs produced. Here we explore the dynamics associated with double and single Wolbachia infections in New Caledonia. Doubly infected females were compatible with all males in the population, explaining the high proportion of doubly infected flies. In this study, males that carry only wHa or wNo infections showed reduced incompatibility when mated to uninfected females, compared with previous reports. These data suggest that either the DNA of these bacterial isolates have diverged from those previously collected, or the genetic background of the host has lead to a reduction in the phenotype of incompatibility. Mitochondrial sequence polymorphism at two sites within the host genome was assayed to investigate population structure related to infection types. There was no correlation between sequence polymorphism and infection type suggesting that double infections are the stable type, with singly infected and uninfected flies arising from stochastic segregation of bacterial strains. Finally, we discuss the nomenclature of Wolbachia strain designation.  相似文献   

16.
Within-host competition in multiply infected hosts is considered an important component of host-parasite interactions, but experimental studies on the dynamics of multiple infections are still rare. We measured the infection frequencies of four strains of the fungal endophyte Epichloë bromicola on two genotypes of its host plant Bromus erectus after single- and double-strain inoculation. Double-strain inoculations resulted in fewer double, but more single, infections than expected on the basis of infection frequencies in single-strain inoculations. In most cases, only one of the two strains established an infection, and strains differed in their overall competitive ability. This pattern resembles the mutual exclusion scenarios in some theoretical models of parasite evolution. In addition, competitive ability varied with host genotype, which may represent a mechanism for the coexistence of strains in a population. Hence, considering the genetic variation in both host and parasite may be important for a better understanding of within-host dynamics and their role in epidemiology or (co)evolution.  相似文献   

17.
Wolbachia and Cardinium are maternally inherited intracellular bacteria that can manipulate the reproduction of their arthropod hosts, such as by inducing cytoplasmic incompatibility (CI). Although the reproductive alteration induced by Wolbachia or Cardinium have been well investigated, the effects of these two endosymbionts co-infecting the same host are poorly understood. We found that Tetranychus piercei McGregor is naturally infected with Wolbachia and Cardinium. We performed all possible crossing combinations using naturally infected and cured strains, and the results show that Wolbachia induced a weak level of CI, while Cardinium-infected and doubly infected males caused severe CI. Wolbachia and Cardinium could not rescue CI each other; however, Wolbachia boosted the expression of Cardinium-induced CI. Quantitative PCR results demonstrated that CI was associated with the infection density of Wolbachia and Cardinium.  相似文献   

18.
Haplodiploid inheritance systems, characterized by male transmission of only their maternally inherited genomic elements, have evolved more than 20 times within the animal kingdom. A number of theoretical studies have argued that infection with certain male‐killing endosymbionts can potentially lead to the evolution of haplodiploidy. By explicitly investigating the coevolutionary dynamics between host and endosymbiont, we show that the assumptions of current models cannot explain the evolution of haplodiploidy very well, as the endosymbiont will often go extinct in the long term. Here, we provide two additional mechanisms that can explain the stable evolution of haplodiploidy by male‐killing endosymbionts. First of all, a spatially structured population can facilitate the long‐term persistence of haplodiploidy, but this applies only when levels of inbreeding are very high. By contrast, endosymbionts that are mutualistic with their hosts provide a much more general and promising route to the stable evolution of haplodiploidy. This model is the first to provide a formal explanation of the supposed association between the evolution of haplodiploidy and the highly inbred lifestyles of some ancestors, while it also provides a hypothesis for the evolution of haplodiploidy in more outbred ancestors.  相似文献   

19.
Non-linear transmission rates and the dynamics of infectious disease.   总被引:4,自引:0,他引:4  
This study considers how non-linearities in the transmission of microparasitic infections affect the population dynamics of host-parasite systems in which the disease is potentially lethal to the host. Non-linearities can either lead to a locally stable or unstable host-parasite equilibrium point, depending on the respective contributions of healthy and infected hosts to the functional form of the transmission rate. Analysis of the non-linear transmission model results in a revealing pair of local stability criteria. Specifically, stability requires sufficient total levels of intrinsic growth of the host population and total levels of density-dependent transmission. The most stable systems occur when increases in the density of healthy hosts result in increases in transmission efficiency, and increases in the number of infected hosts result in small decreases in transmission efficiency. These appear to be very reasonable relationships for directly transmitted microparasites.  相似文献   

20.
The Mediterranean flour moth, Ephestia kuehniella, is infected with A-group Wolbachia (wKue), and the almond moth, Cadra cautella, is doubly infected with A- and B-group Wolbachia, which are designated as wCauA and wCauB, respectively. In both insects, the Wolbachia populations increased greatly during embryonic and larval stages. The Wolbachia population doubled every 3.6 days on average in E. kuehniella larvae, whereas those of wCauA and wCauB doubled every 2.1 days in C. cautella larvae. The populations of wCauA and wCauB that had been transferred into the E. kuehniella background increased at similar rates to that of wKue in the natural host E. kuehniella, suggesting that the host genetic background influences Wolbachia proliferation. To examine whether the populations of the two Wolbachia variants in double infection is regulated collectively or independently, we measured the infection load in the ovaries of three transfected E. kuehniella lines in different infection states: single infection with wCauA, single infection with wCauB, and double infection. The density of each Wolbachia variant did not differ significantly between the singly and doubly transfected hosts, suggesting independent regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号