首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome c(550) is one of the extrinsic Photosystem II subunits in cyanobacteria and red algae. To study the possible role of the heme of the cytochrome c(550) we constructed two mutants of Thermosynechococcus elongatus in which the residue His-92, the sixth ligand of the heme, was replaced by a Met or a Cys in order to modify the redox properties of the heme. The H92M and H92C mutations changed the midpoint redox potential of the heme in the isolated cytochrome by +125 mV and -30 mV, respectively, compared with the wild type. The binding-induced increase of the redox potential observed in the wild type and the H92C mutant was absent in the H92M mutant. Both modified cytochromes were more easily detachable from the Photosystem II compared with the wild type. The Photosystem II activity in cells was not modified by the mutations suggesting that the redox potential of the cytochrome c(550) is not important for Photosystem II activity under normal growth conditions. A mutant lacking the cytochrome c(550) was also constructed. It showed a lowered affinity for Cl(-) and Ca(2+) as reported earlier for the cytochrome c(550)-less Synechocystis 6803 mutant, but it showed a shorter lived S(2)Q(B)(-) state, rather than a stabilized S(2) state and rapid deactivation of the enzyme in the dark, which were characteristic of the Synechocystis mutant. It is suggested that the latter effects may be caused by loss (or weaker binding) of the other extrinsic proteins rather than a direct effect of the absence of the cytochrome c(550).  相似文献   

2.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

3.
The cytochrome bound to the photosynthetic reaction center of Rhodovulum sulfidophilum presents two unusual characteristics with respect to the well characterized tetraheme cytochromes. This cytochrome contains only three hemes because it lacks the peptide motif CXXCH, which binds the most distal fourth heme. In addition, we show that the sixth axial ligand of the third heme is a cysteine (Cys-148) instead of the usual methionine ligand. This ligand exchange results in a very low midpoint potential (-160 +/- 10 mV). The influence of the unusual cysteine ligand on the midpoint potential of this distal heme was further investigated by site-directed mutagenesis. The midpoint potential of this heme is upshifted to +310 mV when cysteine 148 is replaced by methionine, in agreement with the typical redox properties of a His/Met coordinated heme. Because of the large increase in the midpoint potential of the distal heme in the mutant, both the native and modified high potential hemes are photooxidized at a redox poise where only the former is photooxidizable in the wild type. The relative orientation of the three hemes, determined by EPR measurements, is shown different from tetraheme cytochromes. The evolutionary basis of the concomitant loss of the fourth heme and the down-conversion of the third heme is discussed in light of phylogenetic relationships of the Rhodovulum species triheme cytochromes to other reaction center-associated tetraheme cytochromes.  相似文献   

4.
Hay S  Wydrzynski T 《Biochemistry》2005,44(1):431-439
A mutant of the Escherichia coli cytochrome b(562) has been created in which the heme-ligating methionine (Met) at position 7 has been replaced with a histidine (His) (M7H). This protein is a double mutant that also has the His 63 to asparagine (H63N) mutation, which removes a solvent-exposed His. While the H63N mutation has no measurable effect on the cytochrome, the M7H mutation converts the atypical His/Met heme ligation in cytochrome b(562) to the classic cytochrome b-type bis-His ligation. This mutation has little effect on the K(d) of heme binding but significantly reduces the chemical and thermal stability of the mutant cytochrome relative to the wild type (wt). Both proteins have similar absorbance (Abs) and electron paramagnetic resonance (EPR) properties characteristic of 6-coordinate low-spin heme. The Abs spectra of the oxidized and reduced bis-His cytochrome are slightly blue-shifted relative to the wt, and the alpha Abs band of ferrous M7H mutant is unusually split. The M7H mutation decreases the midpoint potential of the bound heme by 260 mV at pH 7 and considerably alters the pH dependence of the E(m), which becomes dominated by a single pK(red) = 6.8.  相似文献   

5.
Bacillus subtilis expresses a cytochrome c-550nm that participates in respiratory electron transfer and is an integral membrane protein. Analysis of the B. subtilis cytochrome c-550nm amino acid sequence predicts a single N-terminal transmembrane helix attached to a water-soluble heme binding domain [C. von Wachenfeldt and L. Hederstedt (1990) J. Biol. Chem. 265, 13939-13948]. We have purified cytochrome c-550nm from wild-type B. subtilis and B. subtilis transformed with the shuttle vector pHP13 containing the gene for B. subtilis cytochrome c-550nm (cccA). In B. subtilis transformed with pHP13/cccA there is better than eightfold more membrane-bound cytochrome c-550nm than in wild-type B. subtilis. The overexpressed cytochrome c-550nm can be purified by chromatography on hydroxylapatite and Q-Sepharose media. A six-histidine tag has been added to the C-terminus of cytochrome c-550nm from B. subtilis as a further aid for purification. This strain produces cytochrome c-550nm to a level fourfold greater than wild type and allows for one-step purification using metal affinity chromatography. UV-Vis spectroscopy detects no change in the heme C spectrum due to the addition of six histidines. Neither form of B. subtilis cytochrome c-550nm is stable in its reduced state in aerated buffer, unless EDTA is added. The two forms, wild-type and his-tagged, of cytochromes c have similar midpoint redox potentials of 195 and 185 mV, respectively, and are equally good substrates for B. subtilis cytochrome c oxidase. We conclude that the addition of the histidine tag eases the purification of cytochrome c-550nm from B. subtilis plasma membranes and that the additional metal binding site does not compromise the stability or functional properties of the protein.  相似文献   

6.
A c-type monoheme ferricytochrome c550 (9.6 kDa) was isolated from cells of Bacillus halodenitrificans sp.nov., grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination. The midpoint redox potential was determined at several pH values by visible spectroscopy. The redox potential at pH 7.6 is 138 mV. When studied by 1H-NMR spectroscopy as a function of pH, the spectrum shows a pH dependence with pKa values of 6.0 and 11.0. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c550. The first pKa is probably associated with protonation of the propionate groups. The second pKa value introduces a larger effect in the 1H-NMR spectrum and is probably due to the ionisation of the axial histidine. Studies of temperature variation of the 1H-NMR spectra for both the ferrous and ferri forms of the cytochrome were performed. Heme meso protons, the heme methyl groups, the thioether protons, two protons from a propionate and the methylene protons from the axial methionine were identified in the reduced form. The heme methyl resonances of the ferri form were also assigned. EPR spectroscopy was also used to probe the ferric heme environment. A signal at gmax approximately 3.5 at pH 7.5 was observed indicating an almost axial heme environment. At higher pH values the signal at gmax approximately 3.5 converts mainly to a signal at g approximately 2.96. The pKa associated with this change is around 11.3. The N-terminal sequence of this cytochrome was determined and compared with known amino acid sequences of other cytochromes.  相似文献   

7.
Cytochrome c maturation in many bacteria, archaea, and plant mitochondria involves the integral membrane protein CcmF, which is thought to function as a cytochrome c synthetase by facilitating the final covalent attachment of heme to the apocytochrome c. We previously reported that the E. coli CcmF protein contains a b-type heme that is stably and stoichiometrically associated with the protein and is not the heme attached to apocytochrome c. Here, we show that mutation of either of two conserved transmembrane histidines (His261 or His491) impairs stoichiometric b-heme binding in CcmF and results in spectral perturbations in the remaining heme. Exogeneous imidazole is able to correct cytochrome c maturation for His261 and His491 substitutions with small side chains (Ala or Gly), suggesting that a "cavity" is formed in these CcmF mutants in which imidazole binds and acts as a functional ligand to the b-heme. The results of resonance Raman spectroscopy on wild-type CcmF are consistent with a hexacoordinate low-spin b-heme with at least one endogeneous axial His ligand. Analysis of purified recombinant CcmF proteins from diverse prokaryotes reveals that the b-heme in CcmF is widely conserved. We have also determined the reduction potential of the CcmF b-heme (E(m,7) = -147 mV). We discuss these results in the context of CcmF structure and functions as a heme reductase and cytochrome c synthetase.  相似文献   

8.
On the basis of amino acid sequences and crystal structures of similar enzymes, it is proposed that Met95 of the heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) acts as a heme axial ligand. In accordance with this proposal, the Soret and visible optical absorption and magnetic circular dichroism spectra of the Fe(II) complexes of the Met95Ala and Met95Leu mutant proteins indicate that these complexes are five-coordinated high-spin, suggesting that Met95 is an axial ligand for the Fe(II) complex. However, the Fe(III) complexes of these mutants are six-coordinated low-spin, like the wild-type enzyme. The latter spectral findings are inconsistent with the proposal that the axial ligand to the Fe(III) heme is Met95. To determine the possibility of a redox-dependent ligand switch in Ec DOS, we further analyzed Soret CD spectra and redox potentials, which provide direct evidence on the environmental structure of the heme protein. CD spectra of Fe(III) Met95 mutants were all different from those of the wild-type protein, suggesting indirect coordination of Met95 to the Fe(III) wild-type heme. The redox potentials of the Met95Leu, Met95Ala and Met95His mutants were considerably lower than that of the wild-type enzyme (+70 mV) at -1, -26, and -122 mV vs. SHE, respectively. Thus, it is reasonable to speculate that water (or hydroxy anion) interacting with Met95, rather than Met95 itself, is the axial ligand to the Fe(III) heme.  相似文献   

9.
Redox properties of cytochrome b559 (Cyt b559) and cytochrome c550 (Cyt c550) have been studied by using highly stable photosystem II (PSII) core complex preparations from a mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus with a histidine tag on the CP43 protein of PSII. Two different redox potential forms for Cyt b559 are found in these preparations, with a midpoint redox potential ( E'(m)) of +390 mV in about half of the centers and +275 mV in the other half. The high-potential form, whose E'(m)is pH independent, can be converted into the lower potential form by Tris washing, mild heating or alkaline pH incubation. The E'(m) of the low-potential form is significantly higher than that found in other photosynthetic organisms and is not affected by pH. The possibility that the heme of Cyt b559 in T. elongatus is in a more hydrophobic environment is discussed. Cyt c550 has a higher E'(m)when bound to the PSII core (-80 mV at pH 6.0) than after its extraction from the complex (-240 mV at pH 6.0). The E'(m) of Cyt c550 bound to PSII is pH independent, while in the purified state an increase of about 58 mV/pH unit is observed when the pH decreases below pH 9.0. Thus, Cyt c550 seems to have a single protonateable group which influences the redox properties of the heme. From these electrochemical measurements and from EPR controls it is proposed that important changes in the solvent accessibility to the heme and in the acid-base properties of that protonateable group could occur upon the release of Cyt c550 from PSII.  相似文献   

10.
Based on DNA sequence data a novel c-type cytochrome, cytochrome cM, has been predicted to exist in the cyanobacterium Synechocystis 6803. The precursor protein consists of 105 amino acids with a characteristic heme-binding motif and a hydrophobic domain located at the N-terminal end that is proposed to act as either a signal peptide or a membrane anchor. For the first time we report the detection of cytochrome cM in Synechocystis 6803 using Western blot analysis. The soluble portion cytochrome cM has been overexpressed in Escherichia coli in two forms, one with a poly histidine tag to facilitate purification and one without such a tag. The overexpressed protein has been purified and shown to bind heme, exhibiting an absorption peak in the Soret band near 416 nm and a peak in the alpha band at 550 nm. The extinction coefficient of cytochrome cM is 23.2 +/- 0.5 mM-1.cm-1 for the reduced minus oxidized alpha band peak (550-535 nm). The isoelectric point of cytochrome cM is 5.6 (without the histidine tag), which is significantly lower than the pI of 7.2 predicted from the amino acid sequence. The redox midpoint potential of cytochrome cM expressed in E. coli is 151 +/- 5 mV (pH 7.1), which is quite low compared to other c-type cytochromes in which a histidine and a methionine residue serve as the axial ligands to the heme. This work opens the way for determining the three-dimensional structure of cytochrome cM and investigating its function in cyanobacteria.  相似文献   

11.
The cycB2 gene encoding the soluble cytochrome c555s from Aquifex aeolicus, an hyperthermophilic organism, has been cloned and expressed using Escherichia coli as the host organism. The cytochrome was successfully produced in the periplasm of an E. coli strain coexpressing the ccmABCDEFGH genes involved in the cytochrome c maturation process. Comparison of native and recombinant cytochrome c555s shows that both proteins are indistinguishable in terms of spectroscopic and physicochemical properties. Since two different methionine residues are present in the sequence stretch usually providing the sixth ligand to the heme iron, site-directed mutagenesis has been performed in order to identify the methionine serving as the axial ligand. Two single mutations were introduced, leading to the replacement of each methionine by a histidine residue. Characterization of both mutants, M78H and M84H cytochromes c555s, using biochemical and biophysical techniques has been carried out. The M84H mutant exhibits spectral features identical to those of native cytochrome. Its redox midpoint potential is decreased by 40 mV. By contrast, substitution of methionine 78 by a histidine residue strongly alters the structural and physicochemical properties of the molecule which exhibits characteristics of His/His iron coordination type rather than His/Met. These results allow us to identify methionine 78 as the sixth ligand of cytochrome c555s heme iron. Preliminary results on the thermostability of the native and mutant cytochromes c555 are also reported.  相似文献   

12.
Ishida M  Dohmae N  Shiro Y  Oku T  Iizuka T  Isogai Y 《Biochemistry》2004,43(30):9823-9833
Natural c-type cytochromes are characterized by the consensus Cys-X-X-Cys-His heme-binding motif (where X is any amino acid) by which the heme is covalently attached to protein by the addition of the sulfhydryl groups of two cysteine residues to the vinyl groups of the heme. In this work, the consensus sequence was used for the heme-binding site of a designed four-helix bundle, and the apoproteins with either a histidine residue or a methionine residue positioned at the sixth coordination site were synthesized and reacted with iron protoporphyrin IX (protoheme) under mild reducing conditions in vitro. These polypeptides bound one heme per helix-loop-helix monomer via a single thioether bond and formed four-helix bundle dimers in the holo forms as designed. They exhibited visible absorption spectra characteristic of c-type cytochromes, in which the absorption bands shifted to lower wavelengths in comparison with the b-type heme binding intermediates of the same proteins. Unexpectedly, the designed cytochromes c with bis-His-coordinated heme iron exhibited oxidation-reduction potentials similar to those of their b-type intermediates, which have no thioether bond. Furthermore, the cytochrome c with His and Met residues as the axial ligands exhibited redox potentials increased by only 15-30 mV in comparison with the cytochrome with the bis-His coordination. These results indicate that highly positive redox potentials of natural cytochromes c are not only due to the heme covalent structure, including the Met ligation, but also due to noncovalent and hydrophobic environments surrounding the heme. The covalent attachment of heme to the polypeptide in natural cytochromes c may contribute to their higher redox potentials by reducing the thermodynamic stability of the oxidized forms relatively against that of the reduced forms without the loss of heme.  相似文献   

13.
The cytochrome c(1) subunit of the ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) contains a single heme group covalently attached to the polypeptide via thioether bonds of two conserved cysteine residues. In the photosynthetic bacterium Rhodobacter (Rba.) capsulatus, cytochrome c(1) contains two additional cysteines, C144 and C167. Site-directed mutagenesis reveals a disulfide bond (rare in monoheme c-type cytochromes) anchoring C144 to C167, which is in the middle of an 18 amino acid loop that is present in some bacterial cytochromes c(1) but absent in higher organisms. Both single and double Cys to Ala substitutions drastically lower the +320 mV redox potential of the native form to below 0 mV, yielding nonfunctional cytochrome bc(1). In sharp contrast to the native protein, mutant cytochrome c(1) binds carbon monoxide (CO) in the reduced form, indicating an opening of the heme environment that is correlated with the drop in potential. In revertants, loss of the disulfide bond is remediated uniquely by insertion of a beta-branched amino acid two residues away from the heme-ligating methionine 183, identifying the pattern betaXM, naturally common in many other high-potential cytochromes c. Despite the unrepaired disulfide bond, the betaXM revertants are no longer vulnerable to CO binding and restore function by raising the redox potential to +227 mV, which is remarkably close to the value of the betaXM containing but loop-free mitochondrial cytochrome c(1). The disulfide anchored loop and betaXM motifs appear to be two independent but nonadditive strategies to control the integrity of the heme-binding pocket and raise cytochrome c midpoint potentials.  相似文献   

14.
Conserved phenylalanine 35 is one of the hydrophobic patch residues on the surface of cytochrome b5 (cyt b5). This patch is partially exposed on the surface of cyt b5 while its buried face is in direct van der Waals' contact with heme b. Residues Phe35 and Phe/Tyr74 also form an aromatic channel with His39, which is one of the axial ligands of heme b. By site-directed mutagenesis we have produced three mutants of cyt b5: Phe35-->Tyr, Phe35-->Leu, and Phe35-->His. We found that of these three mutants, the Phe35-->Tyr mutant displays abnormal properties. The redox potential of the Phe35-->Tyr mutant is 66 mV more negative than that of the wild-type cyt b5 and the oxidized Phe35-->Tyr mutant is more stable towards thermal and chemical denaturation than wild-type cyt b5. In this study we studied the most interesting mutant, Phe35-->Tyr, by X-ray crystallography, thermal denaturation, CD and kinetic studies of heme dissociation to explore the origin of its unusual behaviors. Analysis of crystal structure of the Phe35-->Tyr mutant shows that the overall structure of the mutant is basically the same as that of the wild-type protein. However, the introduction of a hydroxyl group in the heme pocket, and the increased van der Waals' and electrostatic interactions between the side chain of Tyr35 and the heme probably result in enhancement of stability of the Phe35-->Tyr mutant. The kinetic difference of the heme trapped by the heme pocket also supports this conclusion. The detailed conformational changes of the proteins in response to heat have been studied by CD for the first time, revealing the existence of the folding intermediate.  相似文献   

15.
Iwaki M  Osyczka A  Moser CC  Dutton PL  Rich PR 《Biochemistry》2004,43(29):9477-9486
Redox transitions in the Rhodobacter capsulatus cytochrome bc(1) complex were investigated by perfusion-induced attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy combined with synchronous visible spectroscopy, in both the wild type and a cytochrome c(1) point mutant, M183K, in which the midpoint potential of heme was lowered from the wild-type value of 320 mV to 60 mV. Overall redox difference spectra of the wild type and M183K mutant were essentially identical, indicating that the mutation did not cause any major structural perturbation. Spectra were compared with data on the bovine bc(1) complex, and tentative assignments of several bands could be made by comparison with available data on model compounds and crystallographic structures. The bacterial spectra showed contributions from ubiquinone that were much larger than in the bovine enzyme, arising from additional bound and adventitious ubiquinone. The M183K mutant enabled selective reduction of the iron-sulfur protein which in turn allowed the IR redox difference spectra of ISP and cytochrome c(1) to be deconvoluted at high signal/noise ratios, and features of these spectra are interpreted in light of structural and mechanistic information.  相似文献   

16.
A study of the in vitro reconstitution of sugar beet cytochrome b (559) of the photosystem II is described. Both α and β cytochrome subunits were first cloned and expressed in Escherichia coli. In vitro reconstitution of this cytochrome was carried out with partially purified recombinant subunits from inclusion bodies. Reconstitution with commercial heme of both (αα) and (ββ) homodimers and (αβ) heterodimer was possible, the latter being more efficient. The absorption spectra of these reconstituted samples were similar to that of the native heterodimer cytochrome b (559) form. As shown by electron paramagnetic resonance and potentiometry, most of the reconstituted cytochrome corresponded to a low spin form with a midpoint redox potential +36?mV, similar to that from the native purified cytochrome b (559). Furthermore, during the expression of sugar beet and Synechocystis sp. PCC 6803 cytochrome b (559) subunits, part of the protein subunits were incorporated into the host bacterial inner membrane, but only in the case of the β subunit from the cyanobacterium the formation of a cytochrome b (559)-like structure with the bacterial endogenous heme was observed. The reason for that surprising result is unknown. This in vivo formed (ββ) homodimer cytochrome b (559)-like structure showed similar absorption and electron paramagnetic resonance spectral properties as the native purified cytochrome b (559). A higher midpoint redox potential (+126?mV) was detected in the in vivo formed protein compared to the in vitro reconstituted form, most likely due to a more hydrophobic environment imposed by the lipid membrane surrounding the heme.  相似文献   

17.
The nirM gene encoding cytochrome c-551 from Pseudomonas stutzeri Zobell (PZ) has been expressed in Escherichia coli at levels higher than those previously reported but only under strict anaerobic growth conditions. Expression yields for wild-type cytochrome in this study typically reached 0.6 micromol per liter of saturated E. coli culture (5.5mg/L). Culture conditions investigated are compared to obtained c-551 expression levels; the results may lead to a greater understanding of the challenges encountered when expressing c-type hemoproteins in E. coli. The nirM gene was mutated to produce a histidine-47-alanine mutation of c-551 that been heterologously expressed in E. coli using optimum culture conditions and had its physiochemical properties compared to those of the wild-type protein. In PZ, the histidine-47 residue is part of a conserved hydrogen-bonding network located at the bottom of the heme crevice that also involves tryptophan-56 and a heme propionate. Ionization events within this network are experimentally demonstrated to modulate c-551 oxidation-reduction potential and its observed dependence on pH around neutrality. The redox potential of the mutant cytochrome still displays pH-dependence; however, the midpoint potential is approximately 25mV lower with respect to wild-type c-551 at neutral pH while the pK at which the heme propionate (HP-17) ionizes is lowered by 1.3 pH units. Temperature and chemical denaturant studies also show that loss of the hydrogen-bond-donating imidazole leads to a large decrease in c-551 tertiary stability.  相似文献   

18.
19.
A gene coding for lipase-solubilized bovine liver microsomal cytochrome b5 has been synthesized, expressed in Escherichia coli, and mutated at functionally critical residues. Characterization of the recombinant protein revealed that it has a reduction potential that is approximately 17 mV lower than that of authentic wild-type protein at pH 7 (25 degrees C). Structural studies determined that the recombinant protein differed in sequence from authentic wild-type cytochrome b5 owing to three errors in amidation status in the published sequence for the protein on which the gene synthesis was based. The structural origin of the lower reduction potential exhibited by the triple mutant has been investigated through X-ray crystallographic determination of the three-dimensional structure of this protein and is attributed to the presence of Asp-57 within 3.3 A of heme vinyl-4 in the mutant. In addition, the model developed by Argos and Mathews [Argos, P., & Mathews, F.S. (1975) J. Biol. Chem. 250, 747] for the change in cytochrome b5 oxidation state has been studied through mutation of Ser-64 to Ala. In this model, Ser-64 is postulated to stabilize the oxidized protein through H-bonding interactions with heme propionate-7 that orients this propionate group 6.2 A from the heme iron. Spectroelectrochemical studies of a mutant in which Ser-64 has been changed to an alanyl residue demonstrate that this protein has a reduction potential that is 7 mV lower than that of the wild-type protein; moreover, conversion of the heme propionate groups to the corresponding methyl esters increases the potential by 67 mV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Li Z  Andrews H  Eaton-Rye JJ  Burnap RL 《Biochemistry》2004,43(44):14161-14170
The H(2)O oxidizing domain of the cyanobacterial photosystem II (PSII) complex contains a low potential, c-type cytochrome termed c(550) that is essential for the in vivo stability of the PSII complex. A mutant lacking cytochrome c(550) (DeltapsbV) in Synechocystis sp. PCC6803 has been further analyzed together with a construct in which the distal axial heme iron ligand, histidine 92, has been substituted with a methionine (C550-H92M). Heme staining of SDS-PAGE showed that the C550-H92M mutation did not disturb the accumulation and heme-binding properties of the cytochrome. In DeltapsbV cells, the number of charge separating PSII centers was estimated to be 56% of the wild type, but of the existing centers, 33% lacked photooxidizable Mn ions. C550-H92M did not discernibly affect the intrinsic PSII electron-transfer kinetics compared to the wild type nor did it exhibit a significant fraction of centers lacking photooxidizable Mn; however, the number of charge separating PSII centers in mutant cells was 69% of the wild type. C550-H92M lost photoautotrophic growth ability in the absence of Ca(2+), but its growth was not affected by depletion of Cl(-), which differs from DeltapsbV. Taken together, the results suggest that in the absence of cytochrome c(550) electron transfer on the donor side is retarded perhaps at the level of Y(z) to P680(+) transfer, the heme ligand. His92 is not absolutely required for assembly of functional PSII centers; however, replacement by methionine prevents normal accumulation of PSII centers in the thylakoid membranes and alters the Ca(2+) requirement of PSII. The results are discussed in terms of current understanding of the Ca(2+) site of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号