首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Charged polysaccharides are used in the food industry, as cosmetics, and as vaccines. The viscosity, thermodynamics, and hydrodynamic properties of these charged polysaccharides are known to be strongly dependent on the solution ionic strength because of both inter‐ and intramolecular electrostatic interactions. The goal of this work was to quantitatively describe the effect of these electrostatic interactions on the ultrafiltration behavior of several charged capsular polysaccharides obtained from Streptococcus pneumoniae and used in the production of Pneumococcus vaccines. Ultrafiltration data were obtained using various Biomax? polyethersulfone membranes with different nominal molecular weight cutoffs. Polysaccharide transmission decreased with decreasing ionic strength primarily because of the expansion of the charged polysaccharide associated with intramolecular electrostatic repulsion. Data were in good agreement with a simple theoretical model based on solute partitioning in porous membranes, with the effective size of the different polysaccharide serotypes evaluated using size exclusion chromatography at the same ionic conditions. These results provide fundamental insights and practical guidelines for exploiting the effects of electrostatic interactions during the ultrafiltration of charged polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1531–1538, 2016  相似文献   

2.
Electrostatic interactions can have a significant impact on protein transmission through semipermeable membranes. Experimental data for the transport of bovine serum albumin (BSA) through a polyethersulfone ultrafiltration membrane were obtained in different salt solutions over a range of pH and salt concentrations. Net BSA charge under the same conditions was evaluated from mobility data measured by capillary electrophoresis. The results show that specific ionic composition, in addition to solution pH and ionic strength, can strongly affect the rate of protein transport through semipermeable ultrafiltration membranes. The effects of different ions on BSA sieving are due primarily to differences in ion binding to the protein, which leads to significant differences in the net protein charge at a given pH and ionic strength. This effect could be described in terms of an effective protein radius, which accounts for the electrostatic exclusion of the charged protein from the membrane pores. These results provide important insights into the nature of the electrostatic interactions in membrane systems.  相似文献   

3.
Ultrafiltration of peptide mixtures is studied under various operating conditions (transmembrane pressure, tangential flow-rate) using two ultrafiltration inorganic membranes M5 and M1 with molecular weight cut-offs, MWCO 10 and 70 kD, respectively. It is shown that the separation of peptides is controlled by a dual mechanism: size exclusion and electrostatic repulsion. When the ionic strength is high enough to screen out the electrostatic interactions, experimental data are in good agreement with a sieving model developed to estimate the intrinsic transmission from the molecular weight of a component and from the MWCO of the membranes. Although the transmission so found is altered by concentration polarisation and pore blocking mechanisms, the results explain the apparent low transmission of peptides by ultrafiltration membranes. If the ionic strength of the fluid is low, electrostatic interactions can influence the transport phenomena, provided that the molecules are highly charged (at pHs away from the pI). For attractive interactions, an apparent partition coefficient larger than 1 is observed. Otherwise, the transmission is lower than predicted by the sieving theoretical equation, as if the partition coefficient were smaller than 1.  相似文献   

4.
Recent studies have demonstrated the importance of electrostatic interactions in membrane systems, but there is still controversy about the underlying phenomena. Protein charge ladders, consisting of a set of chemical derivatives of a given protein that differ by single charge groups, were used to quantify the electrostatic interactions during protein ultrafiltration. Myoglobin charge ladders were generated by acylation, with the different derivatives analyzed simultaneously by capillary electrophoresis. Filtration experiments were performed using polyethersulfone and composite regenerated cellulose membranes, with the membrane charge determined from the streaming potential. As expected, the rejection increased as the protein became more heavily charged due to the increase in electrostatic repulsion. However, the transmission of the weakly charged myoglobin species increased dramatically at very low ionic strength. This increase in transmission was attributed to a shift in pH within the pore caused by hydrogen ion partitioning into the charged membrane. The sieving data were in good agreement with theoretical calculations accounting for the effects of this pH shift on the electrostatic interactions.  相似文献   

5.
The removal of product variants that form during downstream processing remains a challenge in the purification of recombinant therapeutic proteins. We examined the feasibility of separating variants with slightly different net charge using high-performance membrane ultrafiltration. A myoglobin variant was formed by reaction of the lysine epsilon-amino group with succinic anhydride. Sieving data were obtained over a range of solution conditions using commercial polyethersulfone ultrafiltration membranes. Maximum selectivity of about 7-fold was obtained at very low conductivity due to the strong electrostatic repulsion of the more negatively charged variant. Protein separations were performed by diafiltration. A two-stage process generated solutions of the normal myoglobin (in the permeate) and the charge variant (in the retentate), both at greater than 9-fold purification and 90% yield. These results provide the first demonstration that membrane systems can be used to separate proteins that differ by only a single charged amino acid residue.  相似文献   

6.
Although several recent studies have demonstrated the importance of electrostatic interactions in ultrafiltration, there have been few quantitative studies of the effects of membrane charge density on protein transport and membrane hydraulic permeability. Data were obtained using a series of charge-modified cellulose membranes, with the surface charge density controlled by varying the extent of addition of a quaternary amine functionality. The membrane charge was evaluated from streaming potential measurements. Protein transmission decreased by a factor of 100 as the membrane zeta potential increased from 0.3 to 6.6 mV. The protein sieving data were in good agreement with a partitioning model accounting for electrostatic effects, while the hydraulic permeability data were consistent with a flow model accounting for the effects of counter-electroosmosis. The results provide the first quantitative analysis of the effects of membrane charge density on the performance of ultrafiltration membranes.  相似文献   

7.
We manipulate lipid bilayer surface charge and gauge its influence on gramicidin A channel conductance by two strategies: titration of the lipid charge through bulk solution pH and dilution of a charged lipid by neutral. Using diphytanoyl phosphatidylserine (PS) bilayers with CsCl aqueous solutions, we show that the effects of lipid charge titration on channel conductance are masked 1) by conductance saturation with Cs+ ions in the neutral pH range and 2) by increased proton concentration when the bathing solution pH is less than 3. A smeared charge model permits us to separate different contributions to the channel conductance and to introduce a new method for "bilayer pKa" determination. We use the Gouy-Chapman expression for the charged surface potential to obtain equilibria of protons and cations with lipid charges. To calculate cation concentration at the channel mouth, we compare different models for the ion distribution, exact and linearized forms of the planar Poisson-Boltzmann equation, as well as the construction of a "Gibbs dividing surface" between salt bath and charged membrane. All approximations yield the intrinsic pKain of PS lipid in 0.1 M CsCl to be in the range 2.5-3.0. By diluting PS surface charge at a fixed pH with admixed neutral diphytanoyl phosphatidylcholine (PC), we obtain a conductance decrease in magnitude greater than expected from the electrostatic model. This observation is in accord with the different conductance saturation values for PS and PC lipids reported earlier (, Biochim. Biophys. Acta. 552:369-378) and verified in the present work for solvent-free membranes. In addition to electrostatic effects of surface charge, gramicidin A channel conductance is also influenced by lipid-dependent structural factors.  相似文献   

8.
Previous studies have demonstrated that protein transport during ultrafiltration can be strongly influenced by solution pH and ionic strength. The objective of this study was to examine the possibility of controlling protein transmission using a small, highly charged ligand that selectively binds to the protein of interest. Experiments were performed using bovine serum albumin and the dye Cibacron Blue. Protein sieving data were obtained with essentially neutral and negatively charged versions of a composite regenerated cellulose membrane to examine the effects of electrostatic interactions. The addition of only 1 g/L of Cibacron Blue to an 8 g/L BSA solution reduced the BSA sieving coefficient through the negatively-charged membrane by more than two orders of magnitude, with this effect being largely eliminated at high salt and with the neutral membrane. Protein sieving data were in good agreement with model calculations based on the partitioning of a charged sphere in a charged pore accounting for the change in net protein charge due to ligand binding and the increase in solution ionic strength due to the free ligand in solution.  相似文献   

9.
Although a number of previous studies have demonstrated that solution pH can have a dramatic effect on protein transport through ultrafiltration membranes, the exact origin of this behavior has been unclear. Experimental data were obtained for the transport of a broad range of proteins with different surface charge and molecular weight. The effective hydrodynamic size of the proteins was evaluated using size‐exclusion chromatography. The membrane charge, both before and after exposure to a given protein, was evaluated using streaming potential measurements. In most cases, the electrostatic interactions were dominated by the distortion of the electrical double layer surrounding the protein, leading to a distinct maximum in protein transmission at the protein isoelectric point. Attractive electrostatic interactions did occur when the protein and membrane had a large opposite charge, causing a second maximum in transmission at a pH between the isoelectric points of the protein and membrane. The sieving data were in good agreement with theoretical calculations based on available models for the partitioning of charged solutes in cylindrical pores. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 27–37, 1999.  相似文献   

10.
Ultrafiltration membranes were prepared from mixtures of cellulose acetate-polyurethane blend membranes. During the last 1 or 2 decades, the concentration purification and separation of Albumin by ultrafiltration through semipermeable membranes have been put into practice and hence membrane separation is considered as the unit operation. The blend solution was prepared from cellulose acetate and polyurethane in polar solvent in presence of polyvinylpyrrolidone as additive. The performance of modified blend membranes applied for Bovine Serum Albumin (BSA) separation by ultrafiltration technique using Box-Behnken design with three variables: additive, time and pressure. Three different levels was studied to identify a significant correlation between the effect of these variables on the amount of separation of BSA. The methodology identifies the principal experimental variables, which have the greatest effect on the separation process. The experimental values are in good agreement with predicted values, the correlation coefficient was found to be 0.9871.  相似文献   

11.
Ultrafiltration/diafiltration (UF/DF) has been the hallmark for concentrating and buffer exchange of protein and peptide-based therapeutics for years. Here we examine the capabilities and limitations of UF/DF membranes to process oligonucleotides using antisense oligonucleotides (ASOs) as a model. Using a 3 kDa UF/DF membrane, oligonucleotides as small as 6 kDa are shown to have low sieving coefficients (<0.008) and thus can be concentrated to high concentrations (≤200 mg/mL) with high yield (≥95%) and low viscosity (<15 centipoise), provided the oligonucleotide is designed not to undergo self-hybridization. In general, the oligonucleotide should be at least twice the reported membrane molecular weight cutoff for robust retention. Regarding diafiltration, results show that a small amount of salt is necessary to maintain adequate flux at concentrations exceeding about 40 mg/mL. Removal of salts along with residual solvents and small molecule process-related impurities can be robust provided they are not positively charged as the interaction with the oligonucleotide can prevent passage through the membrane, even for common divalent cations such as calcium or magnesium. Overall, UF/DF is a valuable tool to utilize in oligonucleotide processing, especially as a final drug substance formulation step that enables a liquid active pharmaceutical ingredient.  相似文献   

12.
We study the effect of lipid demixing on the electrostatic interaction of two oppositely-charged membranes in solution, modeled here as an incompressible two-dimensional fluid mixture of neutral and charged mobile lipids. We calculate, within linear and nonlinear Poisson-Boltzmann theory, the membrane separation at which the net electrostatic force between the membranes vanishes, for a variety of different system parameters. According to Parsegian and Gingell, contact between oppositely-charged surfaces in an electrolyte is possible only if the two surfaces have exactly the same charge density (sigma(1) = -sigma(2)). If this condition is not fulfilled, the surfaces can repel each other, even though they are oppositely charged. In our model of a membrane, the lipidic charge distribution on the membrane surface is not homogeneous and frozen, but the lipids are allowed to freely move within the plane of the membrane. We show that lipid demixing allows contact between membranes even if there is a certain charge mismatch, /sigma(1)/ not equal /sigma(2)/, and that in certain limiting cases, contact is always possible, regardless of the value of sigma(1)/sigma(2) (if sigma(1)/sigma(2) < 0). We furthermore find that of the two interacting membranes, only one membrane shows a major rearrangement of lipids, whereas the other remains in exactly the same state it has in isolation and that, at zero-disjoining pressure, the electrostatic mean-field potential between the membranes follows a Gouy-Chapman potential from the more strongly charged membrane up to the point of the other, more weakly charged membrane.  相似文献   

13.
We present theoretical work in which the degree of electrostatic coupling across a charged lipid bilayer in aqueous solution is analyzed on the basis of nonlinear Poisson–Boltzmann theory. In particular, we consider the electrostatic interaction of a single, large macroion with the two apposed leaflets of an oppositely charged lipid bilayer where the macroion is allowed to optimize its distance to the membrane. Three regimes are identified: a weak and a high macroion charge regime, separated by a regime of close macroion–membrane contact for intermediate charge densities. The corresponding free energies are used to estimate the degree of electrostatic coupling in a lamellar cationic lipid–DNA complex. That is, we calculate to what extent the one-dimensional DNA arrays in a sandwich-like lipoplex interact across the cationic membranes. We find that, in spite of the low dielectric constant inside a lipid membranes, there can be a significant electrostatic contribution to the experimentally observed cross-bilayer orientational ordering of the DNA arrays. Our approximate analytical model is complemented and supported by numerical calculations of the electrostatic potentials and free energies of the lamellar lipoplex geometry. To this end, we solve the nonlinear Poisson–Boltzmann equation within a unit cell of the lamellar lipoplex using a new lattice Boltzmann method. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

14.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

15.
Poly(ethylene glycol) (PEG)-stabilized liposomes were recently shown to exhibit differences in cell uptake that were linked to the liposome charge. To determine the differences and similarities between charged and uncharged PEG-decorated liposomes, we directly measured the forces between two supported, neutral bilayers with terminally grafted PEG chains. The measurements were performed with the surface force apparatus. The force profiles were similar to those measured with negatively charged PEG conjugates of 1, 2-distearoyl-sn-glycero-3-phosphatidyl ethanolamine (DSPE), except that they lacked the longer ranged electrostatic repulsion observed with the charged compound. Theories for simple polymers describe the forces between end-grafted polymer chains on neutral bilayers. The force measurements were complemented by surface plasmon resonance studies of protein adsorption onto these layers. The lack of electrostatic forces reduced the adsorption of positively charged proteins and enhanced the adsorption of negatively charged ones. The absence of charge also allowed us to determine how membrane charge and the polymer grafting density independently affect protein adsorption on the coated membranes. Such studies suggest the physical basis of the different interactions of charged and uncharged liposomes with proteins and cells.  相似文献   

16.
Recent studies have demonstrated the feasibility of using membrane ultrafiltration for the purification of pegylated proteins; however, the separations have all been performed at relatively low protein concentrations where intermolecular interactions are unimportant. The objective of this study was to examine the behavior at higher PEG concentrations and to develop an appropriate theoretical framework to describe the effects of intermolecular interactions. Ultrafiltration experiments were performed using pegylated α‐lactalbumin as a model protein with both neutral and charged composite regenerated cellulose membranes. The transmission of the pegylated α‐lactalbumin, PEG, and α‐lactalbumin all increase with increasing PEG concentration due to the increase in the solute partition coefficient arising from unfavorable intermolecular interactions in the bulk solution. The experimental results were in good agreement with a simple model that accounts for the change in Gibbs free energy associated with these intermolecular interactions, including the effects of concentration polarization on the local solute concentrations upstream of the membrane. These intermolecular interactions are shown to cause a greater than expected loss of pegylated product in a batch ultrafiltration system, and they alter the yield and purification factor that can be achieved during a diafiltration process to remove unreacted PEG. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:655–663, 2013  相似文献   

17.
Ultrafiltration and diafiltration processes are used extensively for removal of a variety of small impurities from biological products. There has, however, been no experimental or theoretical analysis of the effects of impurity- product binding on the rate of impurity removal during these processes. Model calculations were performed to account for the effects of equilibrium binding between a small impurity and a large (retained) product on impurity clearance. Experiments were performed using D-tryptophan and bovine serum albumin as a model system. The results clearly demonstrate that binding interactions can dramatically reduce the rate of small impurity removal, leading to large increases in the required number of diavolumes. The optimal product concentration for performing the diafiltration shifts to lower product concentrations in the presence of strong binding interactions. Approximate analytical expressions for the impurity removal were developed which can provide a guide for the design and optimization of industrial ultrafiltration/diafiltration processes.  相似文献   

18.
Doped t-PA is a well known benchmark model for studying the effect of a variety of atomic impurities on the energy gap variations in organic solids. This system is used here to study the effect of cationic and anionic impurities on the energy gap, leading to the observed phase transitions from insulator to metallic conductor behaviour displayed by this system. The model used is based on a cluster-like approach to the doped t-PA system, and the analysis is performed by focusing on the electrostatic and non-electrostatic contributions to the energy gap variations upon doping with different Lewis acids and bases at both low and high charge transfer regimes. The variations of the energy gap naturally appear to be associated with the fluctuation of the electrostatic potential induced by the host–:guest charge transfer.  相似文献   

19.
20.
A model is proposed for the electrostatic repulsion between two ion-penetrable charged membranes in which fixed charges are uniformly distributed. This model assumes that the electric potential far inside the membrane is always equal to the Donnan potential, independent of the membrane separation. In this respect the present model completely differs from usual models for the electrostatic interaction of colloidal particles which assume that the surface potential or the surface charge density remains constant during interaction. It is shown that the rise in potential in the interacting membranes caused by their approach is greatly suppressed so that the potential in the membrane does not exceed the Donnan potential. Numerical results of the calculation of the repulsion by the non-linear Poisson-Boltzmann equation are displayed as a function of the membrane separation and an approximate formula is also derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号