首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Some plant-growth-promoting bacteria encode the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which breaks down ACC, the direct precursor of ethylene biosynthesis in all higher plants, into ammonia and α-ketobutyrate and, as a result, reduces stress ethylene levels in plants caused by a wide range of biotic and abiotic stresses. It was previously shown that ACC deaminase can inhibit crown gall development induced by Agrobacterium tumefaciens and can partially protect plants from this disease. Agrobacterium tumefaciens D3 has been previously reported to contain a putative ACC deaminase structural gene (acdS) and a regulatory gene (acdR = lrpL). In the present study, it was found that A. tumefaciens D3 is an avirulent strain. ACC deaminase activity and its regulation were also characterized. Under gnotobiotic conditions, wild-type A. tumefaciens D3 was shown to be able to promote plant root elongation, while the acdS and lrpL double mutant strain A. tumefaciens D3-1 lost that ability. When co-inoculated with the virulent strain, A. tumefaciens C58, in wounded castor bean plants, both the wild-type A. tumefaciens D3 and the mutant A. tumefaciens D3-1 were found to be able to significantly inhibit crown gall development induced by A. tumefaciens C58.  相似文献   

5.
6.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

7.
The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.  相似文献   

8.
The structural gene for 1-aminocyclopropane-1-carboxylate (ACC) deaminase ( acdS ) from the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN was isolated and used to construct a mutant strain B. phytofirmans YS2 ( B. phytofirmans PsJN/Δ acdS ), in which an internal segment of the acdS gene was deleted. The mutant YS2 lost ACC deaminase activity as well as the ability to promote the elongation of the roots of canola seedlings. Concomitant with the creation of this deletion mutant, a number of physiological changes were observed in the bacterium, including an increase in indole acetic acid synthesis, a decrease in the production of siderophores and an increase in the cellular level of the stationary-phase σ factor, RpoS. Introduction of the wild-type acdS gene into the mutant YS2 to construct strain B. phytofirmans YS3 ( B. phytofirmans YS2/pRK-AcdS) restored both ACC deaminase activity and plant growth-promotion activity in strain YS3. However, the complemented mutant still showed the above-mentioned physiological changes.  相似文献   

9.
The technique of RNA arbitrarily primed-polymerase chain reaction (RAP-PCR) was used to study changes in gene expression over time in canola roots treated with the 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing plant-growth-promoting bacterium Enterobacter cloacae UW4 and to compare the changes with those in a mutant of E. cloacae UW4 in which the ACC deaminase structural gene acdS was replaced by homologous recombination with acdS with an intentional knockout containing a tetracycline resistance gene. Genes that were either up- or down-regulated over a three-day period in canola plants treated with wild-type or mutant bacteria were isolated, cloned, and sequenced; all appeared to have high homology with Arabidopsis thaliana genes. The upregulated genes included a cell division cycle protein 48 homolog and a eukaryotic translation initiation factor 3 subunit 7 gene homolog. The downregulated genes included one encoding a glycine-rich RNA binding protein with a function in RNA processing or binding during ethylene-induced stress, which is expressed only in roots, and another gene thought to be involved in a defense signaling pathway. All RAP-PCR results were verified using Northern blotting. These data, indicate that roots isolated from canola seeds treated with the ACC deaminase-producing E. cloacae UW4 upregulate genes involved in cell division and proliferation but down-regulate stress genes. This data is in agreement with a model in which ACC deaminase-containing plant-growth-promoting bacteria reduce plant stress and induce root elongation and proliferation in plants, largely by lowering ethylene levels.  相似文献   

10.
11.
Deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is a key plant-beneficial trait found in plant growth-promoting rhizobacteria (PGPR) and phytosymbiotic bacteria, but the diversity of the corresponding gene (acdS) is poorly documented. Here, acdS sequences were obtained by screening putative ACC deaminase sequences listed in databases, based on phylogenetic properties and key residues. In addition, acdS was sought in 71 proteobacterial strains by PCR amplification and/or hybridization using colony dot blots. The presence of acdS was confirmed in established AcdS+ bacteria and evidenced noticeably in Azospirillum (previously reported as AcdS-), in 10 species of Burkholderia and six Burkholderia cepacia genomovars (which included PGPR, phytopathogens and opportunistic human pathogens), and in five Agrobacterium genomovars. The occurrence of acdS in true and opportunistic pathogens raises new questions concerning their ecology in plant-associated habitats. Many (but not all) acdS+ bacteria displayed ACC deaminase activity in vitro, including two Burkholderia clinical isolates. Phylogenetic analysis of partial acdS and deduced AcdS sequences evidenced three main phylogenetic clusters, each gathering pathogens and plant-beneficial strains of contrasting geographic and habitat origins. The acdS phylogenetic tree was only partly congruent with the rrs tree. Two clusters gathered both Betaprotobacteria and Gammaproteobacteria, suggesting extensive horizontal transfers of acdS, noticeably between plant-associated Proteobacteria.  相似文献   

12.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.  相似文献   

13.
14.
Lowering of plant ethylene by deamination of its immediate precursor 1-aminocyclopropane-1-carboxylate (ACC) is a key trait found in many rhizobacteria. We isolated and screened bacteria from the rhizosphere of wheat for their ACC-degrading ability. The ACC deaminase gene (acdS) isolated from two bacterial isolates through PCR amplification was cloned and sequenced. Nucleotide sequence alignment of these genes with previously reported genes of Pseudomonas sp. strain ACP and Enterobacter cloacae strain UW4 showed variation in their sequences. In the phylogenetic analysis, distinctness of these two genes was observed as a separate cluster. 16S rDNA sequencing of two isolates identified them to be Achromobacter sp. and Pseudomonas stutzeri.  相似文献   

15.
Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. Several rhizobia species express the enzyme ACC deaminase, which degrades the ethylene precursor 1-cyclopropane-1-carboxilate (ACC), leading to reductions in the amount of ethylene evolved by the plant. M. loti has a gene encoding ACC deaminase, but this gene is under the activity of the NifA-RpoN-dependent promoter; thus, it is only expressed inside the nodule. The M. loti structural gene ACC deaminase (acdS) was integrated into the M. loti chromosome under a constitutive promoter activity. The resulting strain induced the formation of a higher number of nodules and was more competitive than the wild-type strain on Lotus japonicus and L. tenuis. These results suggest that the introduction of the ACC deaminase activity within M. loti in a constitutive way could be a novel strategy to increase nodulation competitiveness of the bacteria, which could be useful for the forage inoculants industry.  相似文献   

16.
Na,K-ATPase alpha 1 subunit gene (ATP1A1) is one of the housekeeping genes involved in homeostasis of Na+ and K+ in all animal cells. We identified and characterized the cis-acting elements that regulate the expression of ATP1A1. The region between -155 and -49 was determined as a positive regulatory region in five cultured cell lines of different tissue origins (MDCK, B103, L6, 3Y1, and HepG2). The region was divided into three subregions: from -120 to -106 (including the Sp1 binding site), from -102 to -61, and from -58 to -49 (including an Sp1 consensus sequence). Cell type-specific factors binding to the middle subregion (from -102 to -61) were detected by gel retardation analysis, using nuclear extracts prepared from MDCK and B103 cells. Two gel retardation complexes were formed in the B103 nuclear extract, and three were formed in the MDCK nuclear extract. DNA binding regions of these factors were located at -88 to -69 and differed from each other in DNase I footprinting experiments. These factors also showed different binding characteristics in gel retardation competition and methylation interference experiments. The identified cis element was named the ATP1A1 regulatory element. The core sequence of this element is found in several other genes involved in cellular energy metabolism, suggesting that the sequence is a common regulatory element responsive to the state of energy metabolism.  相似文献   

17.
Pseudomonas fluorescens strain CHA0, a root colonizing bacterium, has a broad spectrum of biocontrol activity against plant diseases. However, strain CHA0 is unable to utilize 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of plant ethylene, as a sole source of nitrogen. This suggests that CHA0 does not contain the enzyme ACC deaminase, which cleaves ACC to ammonia and alpha-ketobutyrate, and was previously shown to promote root elongation of plant seedlings treated with bacteria containing this enzyme. An ACC deaminase gene, together with its regulatory region, was transferred into P. fluorescens strains CHA0 and CHA96, a global regulatory gacA mutant of CHA0. ACC deaminase activity was expressed in both CHA0 and CHA96. Transformed strains with ACC deaminase activity increased root length of canola plants under gnotobiotic conditions, whereas strains without this activity had no effect. Introduction of ACC deaminase genes into strain CHA0 improved its ability to protect cucumber against Pythium damping-off, and potato tubers against Erwinia soft rot in small hermetically sealed containers. In contrast, ACC deaminase activity had no significant effect on the ability of CHA0 to protect tomato against Fusarium crown and root rot, and potato tubers against soft rot in large hermetically sealed containers. These results suggest that (i) ACC deaminase activity may have lowered the level of plant ethylene thereby increasing root length; (ii) the role of stress-generated plant ethylene in susceptibility or resistance depends on the host-pathogen system, and on the experimental conditions used; and (iii) the constructed strains could be developed as biosensors for the role of ethylene in plant diseases.  相似文献   

18.
Plant growth-promoting bacteria are useful to phytoremediation strategies in that they confer advantages to plants in contaminated soil. When plant growth-promoting bacteria contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, the bacterial cell acts as a sink for ACC, the immediate biosynthetic precursor of the plant growth regulator ethylene thereby lowering plant ethylene levels and decreasing the negative effects of various environmental stresses. In an effort to gain the advantages provided by bacterial ACC deaminase in the phytoremediation of metals from the environment two transgenic canola lines with the gene for this enzyme were generated and tested. In these transgenic canola plants, expression of the ACC deaminase gene is driven by either tandem constitutive cauliflower mosaic virus (CaMV) 35S promoters or the root specific rolD promoter from Agrobacterium rhizogenes. Following the growth of transgenic and non-transformed canola in nickel contaminated soil, it was observed that the rolD plants demonstrate significantly increased tolerance to nickel compared to the non-transformed control plants.  相似文献   

19.
Symbiotic association between rhizobia and legumes results in the development of unique structures on roots, called nodules. Nodulation is a very complex process involving a variety of genes that control NOD factors (bacterial signaling molecules), which are essential for the establishment, maintenance and regulation of this process and development of root nodules. Ethylene is an established potent plant hormone that is also known for its negative role in nodulation. Ethylene is produced endogenously in all plant tissues, particularly in response to both biotic and abiotic stresses. Exogenous application of ethylene and ethylene-releasing compounds are known to inhibit the formation and functioning of nodules. While inhibitors of ethylene synthesis or its physiological action enhance nodulation in legumes, some rhizobial strains also nodulate the host plant intensively, most likely by lowering endogenous ethylene levels in roots through their 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Co-inoculation with ACC deaminase containing plant growth promoting rhizobacteria plus rhizobia has been shown to further promote nodulation compared to rhizobia alone. Transgenic rhizobia or legume plants with expression of bacterial ACC deaminase could be another viable option to alleviate the negative effects of ethylene on nodulation. Several studies have well documented the role of ethylene and bacterial ACC deaminase in development of nodules on legume roots and will be the primary focus of this critical review.  相似文献   

20.
Promotion of Plant Growth by Bacterial ACC Deaminase   总被引:7,自引:0,他引:7  
To date, there has been only limited commercial use of plant growth-promoting bacteria in agriculture, horticulture, and silviculture. However, with recent progress toward understanding the mechanisms that these organisms utilize to facilitate plant growth, the use of plant growth-promoting bacteria is expected to continue to increase worldwide. One of the key mechanisms employed by plant growth-promoting bacteria to facilitate plant growth is the lowering of plant ethylene levels by the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase. This article reviews the published work on this enzyme, with an emphasis on its biochemistry, protein structure, genes, and regulation. In addition, this article provides some initial insights into the changes in both plants and ACC deaminase-containing plant growth-promoting bacteria as a consequence of plant-microbe interactions. Finally, a brief discussion of how bacterial ACC deaminase and indoleacetic acid (IAA) together modulate plant growth and development is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号