首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the leukemia-prone AKR thymus, ecotropic and xenotropic-related viruses are expressed that generate leukemogenic recombinant viruses before the onset of leukemia. We have shown previously that (AKR X NZB)F1 hybrid mice do not develop leukemia because they severely restrict the expression of these retroviruses in their thymuses. The thymic microenvironment of the (AKR X NZB)F1 mice appeared to be of particular importance in determining this restriction, which was specified by an NZB-derived genetic influence. In the present study we analyze reciprocal thymus graft and irradiation bone marrow chimeras to establish that this influence is exerted by thymic reticuloepithelial cells. Prospective studies with thymic epithelial grafts from young mice show that the AKR thymic epithelium can simultaneously induce the amplified expression of retroviral genes, and changes in patterns of thymocyte differentiation that precede the development of leukemia, whereas the (AKR X NZB)F1 thymic epithelium is deficient in this regard.  相似文献   

2.
S K Datta  S D Waksal  R S Schwartz 《Cell》1980,19(1):171-179
(AKR x NZB)F1 mice possess the dominant genes, Akv-1, Akv-2, Nzv-1a and Nzv-2a, which determine the expression of ecotropic and xenotropic viruses. Nevertheless, their thymic lymphocytes fail to produce these agents, and these mice are resistant to leukemia. We investigated the mechanism of this cell-specific restriction in radiation chimeras. (AKR x NZB)F1 thymocytes that had differentiated in lethally irradiated AKR recipients produced high levels of ecotropic and xenotropic viruses and showed marked amplification of MuLV antigen expression. Polytropic viruses could also be isolated from such thymocytes. These virological changes in chimeric thymocytes were donor- and host-specific and occurred only when (AKR x NZB)F1 bone marrow cells were inoculated into AKR recipients. This inductive capacity of the host environment could be detected in irradiated AKR recipients as early as age 2 months. The phenotypic changes brought about in leukemia-resistant (AKR x NZB)F1 thymocytes by the leukemia-susceptible AKR thymic microenvironment may be the result of a three-component inductive system.  相似文献   

3.
T1-oligonucleotide fingerprinting and mapping were used to study the expression of RNA leukemia viruses in leukemic and preleukemic AKR/J mice, with techniques designed to minimize the loss or inadvertent selection of viruses in vitro before biochemical analysis. In leukemic animals, complex mixtures of ecotropic and mink-tropic viruses were expressed. Unique but similar polytropic virus-like genomes were present in each tumor isolate. In preleukemic mice, viral isolates from the thymus that were grown on NIH3T3 fibroblasts contained genomes with non-Akv polytropic virus-related oligonucleotides. This phenomenon was not evident in fingerprints of viruses from the spleen and bone marrow of the same animals. Remarkably, the non-Akv oligonucleotides located in the 3' portion of the P15E gene, the U3 noncoding region, and the 5' part of the gp70 gene were often expressed independently. Our results suggest the following. (i) Recombinant viruses can be detected in the thymuses of young preleukemic AKR mice and increase in relative abundance with age. (ii) During in vivo generation of the recombinant leukemogenic viruses, the selection of polytropic virus-related sequences in the 3' part of p15E and the U3 region and the 5' portion of gp70 occurs independently. (iii) Independent biological properties encoded in the gp70 and p15E regions of env of the recombinant viruses may mediate viral selection or leukemogenicity. (iv) The leukemogenic polytropic viruses of AKR/J mice arise via genetic recombination involving at least three endogenous viral sequences.  相似文献   

4.
M S McGrath  I L Weissman 《Cell》1979,17(1):65-75
We have previously demonstrated that in vitro cell lines of mouse thymic lymphomas express surface receptors specific for the retrovirus that induced them. This study extends these observations to an analysis of receptor-bearing cells in the preleukemic and leukemic phases of spontaneous AKR thymic lymphomagenesis. AKR mice regularly begin expressing N-tropic retroviruses (as assayed on NIH fibroblasts by the XC plaque assay) in several tissues early in life; thymic lymphocytes also express these viruses, but are not autonomously transformed. Later thymic lymphomas emerge which are capable of metastasizing in the host of origin or transplanting leukemias into syngeneic hosts. Just prior to the appearance of thymic lymphomas, these mice also begin producing xenotropic retroviruses [as assayed in xenogeneic (For example, mink) fibroblasts], and concomitant with the appearance of the leukemias is the appearance of "recombinant" retroviruses which cause mink fibroblast foci (MCF); these viruses express elements of both N- and X-tropic virus envelopes and N-tropic viral gene products in their cores. Spontaneous AKR leukemias also produce other retroviruses which do not cause XC plaques or mink fibroblast foci; these are called SL viruses. The subject of this study was to test whether in vivo thymocytes in the preleukemic and leukemic periods also bear receptors specific for N-tropic, recombinant MCF and SL AKR retroviruses. We demonstrated that each spontaneous thymic lymphoma does bear receptors that bind viruses produced by the lymphomas and MCF-247 to a high degree and that bind N-ecotropic AKR retroviruses less well. Thymic lymphocytes predominating in the preleukemic period do not express detectable levels of receptors for either of the viruses. In some mice, receptor-positive cells co-exist with receptor-negative cells; only the receptor-positive cells are capable of transplanting leukemia to syngeneic hosts. We conclude that the presence of specific cell surface receptors for lymphoma cell-produced and recombinant AKR retroviruses is a marker for leukemia in these hosts.  相似文献   

5.
We studied the appearance and structure of murine leukemia viral genomes in preleukemic AKR/J mice by Southern hybridization. Up to an average of one to two copies per thymocyte of unintegrated murine leukemia virus DNA appears in the thymuses of preleukemic mice beginning at 4 to 5 months of age and disappears in leukemic thymuses. The free viral genomes are absent in the spleens, livers, and brains of preleukemic mice. Using a series of ecotropic and nonecotropic murine leukemia virus hybridization probes, we showed that the unintegrated viral genomes are structurally analogous to those of recombinant mink cell focus-forming viruses that appear as proviruses in leukemic AKR thymocytes, suggesting that these free viral DNAs are the direct precursors to the leukemia-specific proviruses. The mosaic of ecotropic and nonecotropic sequences within these unintegrated viral DNAs varies from one preleukemic thymus to another but often appears structurally homogeneous within individual thymuses, indicating that often each thymus was being infected by a unique mink cell focus-forming virus. Analysis of high-molecular-weight DNA shows that recombinant proviruses reside in the chromosomal DNA of thymocytes within the preleukemic thymus, with the number rising to an average of several copies per thymocyte, but we do not detect any preferred integration sites. These results suggest that, in general, before the development of thymic leukemias in AKR mice there is a massive infection by a unique mink cell focus-forming virus which then integrates into many different sites of individual thymocytes, one of which grows out to become a tumor.  相似文献   

6.
7.
The murine leukemic strain HRS/J has an autosomal-recessive, mutant gene, hr, with homozygotes (hr/hr) having a 72% incidence of thymic leukemia at 18 months of age compared to 20% in heterozygotes (hr/+). This study was done to (a) determine if expression of thymocyte differentiation and murine leukemia virus (MuLV) antigens during leukemic transformation were different in hr/hr compared to hr/+ mice, (b) define the subpopulations that were targets for leukemic transformation, and (c) compare the results to reports in other leukemic strains. Flow cytometry analysis of thymus cell suspensions was done with anti-T-cell and anti-H-2 monoclonal antibodies, peanut agglutinin (PNA), and heteroantisera to MuLV antigens. Thymocytes of 1- to 3-month-old HRS/J mice were Thy 1.2+, Lyt 1+2+, H-2Kk-, and MuLV- with an immature-nonactivated phenotype, i.e., PNA+, and Iak-. Preleukemic and leukemic thymocytes showed diversity in expression of Thy 1.2 and Ly antigens with increased H-2Kk and MuLV expression. No differences in phenotype patterns were noted between hr/+ and hr/hr mice during the time course of leukemogenesis. Persistently high PNA/low Iak expression of preleukemic and leukemic thymocytes indicated that the target for HRS leukemic transformation was an immature-nonactivated thymocyte subpopulation in contrast to AKR/J mice in which leukemic transformation involves a mature-activated thymocyte subpopulation. These findings suggest that spontaneously generated leukemogenic viruses in HRS mice have tropism for thymocytes of an immature-nonactivated phenotype.  相似文献   

8.
SL3-3 is a potent leukemogenic retrovirus that closely resembles the non-leukemogenic virus Akv. Both viruses were isolated from AKR mice, have ecotropic host ranges, and form plaques in the XC assay. They differ at only 1 to 2% of the nucleotides in the viral genomes but differ markedly in virulence properties. SL3-3 induces leukemia in a high percentage of inoculated AKR, C3H, CBA, and NFS mice, whereas Akv does not induce disease in any of these strains. To determine which region of the genome accounts for the leukemogenic potential of SL3-3, we constructed recombinant genomes between molecular clones of SL3-3 and Akv. Recombinant, viral DNA genomes were cloned and then were transfected onto NIH 3T3 fibroblasts to generate infectious virus. The recombinant viruses were tested for leukemogenicity in AKR/J, CBA/J, and C3Hf/Bi mice. We localized the primary leukemogenic determinant to a 3.8-kilobase fragment of the SL3-3 genome containing the viral long terminal repeat, 5' untranslated sequences, gag gene, and 5', 30% of the pol gene. Reciprocal recombinants containing the equivalent region from Akv, linked to the env gene and the remainder of the pol gene from SL3-3, did not induce leukemia. We conclude that the primary virulence determinant of SL3-3 lies outside the region of the genome that encodes the envelope proteins gp70 and p15E.  相似文献   

9.
The development of spontaneous lymphomas in CWD mice is associated with the expression of endogenous ecotropic murine leukemia viruses (MuLV) and the formation of recombinant viruses. However, the pattern of substitution of nonecotropic sequences within the envelope genes of the CWD class II recombinant viruses differs from that seen in class I recombinant MuLVs of AKR, C58, and HRS mice. To determine how CWD host genes might influence the envelope gene structure of the recombinant viruses, we characterized the responses of these mice to two different types of exogenous MuLVs. Neonatal mice injected the HRS class I recombinant PTV-1 became infected and developed T-cell lymphomas more rapidly than controls did. The inoculation of CWD mice with the leukemogenic AKR ecotropic virus SL3-3 led to the formation of recombinant MuLVs with a novel genetic structure and class II-like envelope genes, although SL3-3 generates class I recombinants in other strains. These results suggest that the absence of class I recombinant MuLVs in CWD mice is not related to the restriction of the replication or oncogenicity of class I viruses or to the absence of an appropriate ecotropic virus that can generate class I recombinants. More likely, the genes of CWD mice that direct the formation or selection of class II recombinant viruses affect the process of recombination between the ecotropic and nonecotropic envelope gene sequences.  相似文献   

10.
Virological events leading to spontaneous AKR thymomas.   总被引:29,自引:23,他引:6       下载免费PDF全文
The spontaneous leukemias of AKR mice are caused by mink cell focus-forming (MCF) viruses. These viruses are generated by recombination between several endogenous murine retroviruses. The virological events leading to the generation of the leukemogenic agent were investigated by using an oligonucleotide specific for the U3 region of the leukemogenic virus and env-reactive oligonucleotide probes specific for the different classes of endogenous murine leukemia virus. It was shown that (i) the leukemogenic MCF virus is formed by recombination between at least three different endogenous sequences; (ii) the U3 donor for the leukemogenic virus is the inducible xenotropic virus Bxv-1; (iii) all spontaneous tumors contain viruses with duplicated enhancer regions in their long terminal repeats; (iv) enhancer duplication is a somatic event, since Bxv-1 contains only one copy; (v) the first recombinant virus detectable in mass populations of thymocytes by Southern hybridization analysis contains all structural features of the ultimate leukemogenic virus; and (vi) the multiple novel viruses in a given tumor represent progeny of the same unique recombination events. On the basis of these results, an analysis of the virological events leading to AKR thymomas is presented.  相似文献   

11.
Nucleotide sequences encoding gp70, Prp15E, and the U3 region of the long terminal repeat (LTR) distinguish mink cell focus-forming (MCF) retroviruses that can induce leukemia in AKR mice from closely related MCF and ecotropic murine retroviruses that are nonleukemogenic in all inbred mouse strains tested (Lung et al., Cold Spring Harbor Symp. Quant. Biol. 44:1269-1274, 1979; Lung et al., J. Virol. 45:275-290, 1983). We used a set of recombinants constructed in vitro from molecular clones of leukemogenic MCF 247 and nonleukemogenic ecotropic Akv to separate and thereby directly test the role of these genetic elements in disease induction. Leukemogenicity tests of recombinants in AKR mice show that introduction of fragments containing either an MCF LTR or MCF gp70 coding sequences can confer only a very low incidence of disease induction on Akv virus, whereas an MCF type Prp15E alone is completely ineffective. Recombinants with an MCF 247 LTR in combination with MCF Prp15E are moderately oncogenic, whereas those with an MCF 247 LTR plus MCF gp70 coding segment are quite highly leukemogenic. Mice infected with the latter virus show a substantial increase in latent period of disease induction relative to MCF 247; this delay can be reduced when Prp15E, and hence the entire 3' half of the genome, is from MCF 247. Surprisingly, sequences in the 5' half of the genome can also contribute to disease induction. We found a good correlation between oncogenicity and recovery of MCF viruses from thymocytes of injected mice, with early recovery and high titers of MCF in the thymus being correlated with high oncogenicity. This correlation held for recombinants with either an MCF or ecotropic type gp70. Together, these results (i) demonstrate that at least four genes contribute to the oncogenicity of MCF viruses in AKR mice and (ii) suggest that recombinants with only some of the necessary MCF type genes induce leukemia because they recombine to generate complete MCF genomes. Although neither Akv nor MCF 247 is leukemogenic in NFS mice, recombinant viruses whose gp70 gene was derived from Akv but whose LTRs were derived from MCF 247 induced a low incidence of leukemia in this mouse strain.  相似文献   

12.
The acquisition of U3 region sequences derived from the endogenous xenotropic provirus Bxv-1 appears to be an important step in the generation of leukemogenic recombinant viruses in AKR, HRS, C58, and some CWD mice. We report here that each of three CWD lymphomas produced infectious xenotropic murine leukemia virus related to Bxv-1. In Southern blot experiments, these proviruses hybridized to probes that were specific for the xenotropic envelope and Bxv-1 U3 region sequences. Nucleotide sequence analysis of a cloned CWD xenotropic provirus, CWM-S-5X, revealed that the envelope gene was closely related to but distinct from those of other known xenotropic viruses. In addition, the U3 region of CWM-S-5X contained a viral enhancer sequence that was identical to that found in MCF 247, a recombinant AKR virus that is thought to contain the Bxv-1 enhancer. Finally, restriction enzyme sites in the CWM-S-5X provirus were analogous to those reported within Bxv-1. These results establish that the virus progeny of Bxv-1 have the potential to donate pathogenic enhancer sequences to recombinant polytropic murine leukemia viruses. Interestingly, the three CWD polytropic viruses that were isolated from the same tumor cells that produced the Bxv-1-like viruses had not incorporated Bxv-1 sequences into the U3 region.  相似文献   

13.
We have developed a system for analysis of murine leukemic virus (MuLV) receptors on the surface of thymic lymphoma cells utilizing the fluorescence-activated cell sorter. The binding of fluoresceinated or rhodaminated MuLV to target cells showed saturation kinetics and was blocked by homologous MuLV, and bound MuLV had a polypeptide profile identical to that of input MuLV. Thymic lymphomas bound specifically the MuLV which induced them, whereas only 0.5 to 2% of normal thymocytes showed equivalent MuLV binding. Simultaneous binding of excess fluoresceinated RadLV and rhodaminated MCF-247 AKR virus to radiation leukemia virus-induced or spontaneous AKR thymic lymphomas demonstrated that even in the presence of both viruses the cells bound preferentially the inducing MuLV. Examination of the C57BL/Ka endogenous viruses showed that radiation leukemia virus-induced thymic lymphomas bind only thymotropic-leukemogenic radiation leukemia virus and not eco- or xenofibrotropic MuLV's. Thus, virus binding in this system involves only leukemogenic isolates of these retroviruses and implies a central role of this receptor-ligand interaction in the processes of leukemic transformation.  相似文献   

14.
We analyzed viral recombination events that occur during the preleukemic period in AKR mice. We tagged a molecular chimera between the nonleukemogenic virus Akv and the leukemogenic mink cell focus-inducing (MCF) virus MCF 247 with an amber suppressor tRNA gene, supF. We injected the supF-tagged chimeric virus that contains all of the genes of MCF 247 except the envelope gene, which in turn is derived from Akv, into newborn AKR mice to evaluate its pathogenic potential. Approximately the same percentage of animals developed leukemia with similar latent periods when injected with either the tagged or nontagged virus. DNA from tumors induced in AKR mice by the tagged chimeric virus was analyzed by Southern blotting with the supF gene as a probe. One set of tumors contained the injected supF-tagged virus. Two kinds of supF-tagged proviruses were found in a second set of tumors. One group of supF-tagged viruses had a restriction map consistent with that of the injected virus, while the other group of proviruses had restriction maps that suggested that the proviruses had acquired an MCF virus-like envelope gene by recombination with endogenous viral sequences. These results demonstrate that injected viruses recombine in vivo with endogenous viral sequences. Furthermore, the progression to leukemia was accelerated in mice that develop tumors containing proviruses with an MCF virus env gene, emphasizing the importance of the role of the MCF virus env gene product in transformation.  相似文献   

15.
We determined the phenotype and genotype of murine leukemia viruses associated with the development of spontaneous nonthymic lymphomas in the high-leukemia mouse strain CWD/J. By T1 oligonucleotide fingerprint analysis of the viral RNA, the ecotropic viruses recovered from the spleen or thymus of preleukemic CWD/J mice were found to represent the progeny of the two endogenous ecotropic proviruses present in this strain. Polytropic murine leukemia viruses were produced by tissues from one-half of the leukemic mice, and fresh tumor cells from one of the two animals tested expressed recombinant envelope glycoproteins. The genomic structure of the recombinant viruses resembled those of class II polytropic viruses of NFS X Akv mice and differed from those of class I recombinant viruses that are commonly isolated from other high-leukemia strains such as AKR and HRS. Acquired retroviral sequences with the structural features of class II recombinant proviruses were detected in the DNA from each CWD/J tumor by the Southern blot technique. Finally, the injection of a mixture of CWD/J ecotropic and class II recombinant polytropic viruses into neonatal CWD/J mice accelerated the onset of lymphoma, whereas the endogenous ecotropic virus was inactive in these assays.  相似文献   

16.
Naturally occurring recombinant murine leukemia viruses (MuLVs), termed mink cell focus-inducing (MCF) viruses, are the proximal leukemogens in spontaneous thymic lymphomas of AKR mice. The mechanism by which these viruses transform lymphocytes is not clear. Previous studies have implicated either integrational activation of proto-oncogenes, chronic autocrine immune stimulation, and/or autocrine stimulation of growth factor receptors (e.g., interleukin 2 receptors) via binding of the viral env glycoprotein (gp70) to these receptors. Any one of these events could also involve activation of second messenger signaling pathways in the cell. We examined whether infection with oncogenic AKR-247 MCF MuLV induced transmembrane signaling cascades in thymocytes of AKR mice. Cyclic AMP levels were not changed, but there was enhanced turnover of phosphatidylinositol phosphates, with concomitant increases in diacyglycerol and inositol 1,4,5-triphosphate. Thus, phospholipase C activity was increased. Protein kinase C activity was also elevated in comparison to that in uninfected thymocytes. The above events occurred in parallel with MCF expression in the thymus and were chronically maintained thereafter. No changes in phospholipid turnover occurred in an organ which did not replicate the MCF virus (spleen) or in thymocytes of AKR mice infected with a thymotropic, nononcogenic MCF virus (AKV-1-C36). Therefore, only the oncogenic MCF virus induced phosphatidylinositol signal transduction. Flow cytometric comparison of cell surface gp70 revealed that AKR-247 MCF virus-infected thymocytes expressed more MCF virus gp70 than did thymocytes from AKV-1-C36 MCF virus-infected mice, suggesting that certain threshold quantities of MCF virus env glycoproteins may be involved in this signaling. This type of signal transduction is not induced by stimulation of the interleukin 2 receptor but is involved in certain oncogene systems (e.g., ras and fms). Its chronic induction by oncogenic MCF MuLV may thus initiate thymocyte transformation.  相似文献   

17.
Certain continuous lymphoid and myeloid tumor cell lines of rodent origin are unable to grow in tissue culture in the absence of pre-formed L-cystine (CYS). In contrast, three NZB murine lymphoid cell lines obtained from NZB mice free of hematopoietic neoplasm can grow as well in cystine-deficient media containing L-cystathionine (CSN), the immediate precursor of CYS in the biosynthetic pathway, as in cystine sufficient medium. The former class of cells is, therefore, CYS auxotrophs (CYS-) and the latter CYS prototrophs (CYS+). Compared to CYS+ cells, the CYS- lines appear to be relatively deficient in the enzyme cystathionase, which catalyzes the cleavage of CSN to CYS and alpha-ketobutyrate. Using protein synthetic capacity as a criterion, normal thymocytes from mixed-bred Swiss mice behave like CYS prototrophs, while those from littermates bearing Moloney type C virus-induced thymic tumors behave like CYS auxotrophs. The former are also characterized by substantially higher levels of cystathionase than the latter. Extracts of thymocytes from tumor-free AKR mouse thymus are also characterized by higher levels of cystathionase activity than extracts of spontaneous AKR thymomas. Exogenous in vitro type C virus infection of a CYS+ cell results in vigorous virus production but no concomitant reduction in cystathionase activity. Thus viral replication alone in any random lymphoid cell is not sufficient to alter the enzyme level. The data therefore suggests that CYS auxotrophy may closely accompany neoplastic transformation of certain hematopoietic cells in vivo, including that induced by certain "thymic" type C viruses.  相似文献   

18.
3-Methylcholanthrene-induced T-cell thymic lymphomas in RF mice were examined for involvement of murine leukemia virus (MuLV)-related sequences in leukemogenesis. Both the expression of MuLV-related RNA species and the organization of endogenous MuLV proviral DNA were analyzed. Of 27 primary tumors examined, only 5 exhibited elevated MuLV-related RNA species homologous to xenotropic specific env DNA. None of these RNA species hybridized with ecotropic p15E DNA sequences. Only two of these five tumors contained MuLV-like RNA species that hybridized with ecotropic MuLV long terminal repeat sequences, despite the probe's ability to detect both ecotropic MuLV and mink cell focus-inducing viral RNA. No muLV resembling mink cell focus-inducing virus whose expression could be correlated with lymphomagenesis was detected in either preleukemic thymocytes, primary 3-methylcholanthrene-induced thymic tumors, tumors passaged in vivo, or cell lines derived from tumors. Restriction endonuclease analysis of DNA from both primary tumors and cell lines failed to reveal either proviral DNA with recombinant env genes or rearrangement of endogenous MuLV proviruses. Therefore, chemically induced lymphomagenesis in RF mice appears different from the spontaneous lymphomagenic process in AKR mice with respect to the involvement of endogenous MuLV sequences.  相似文献   

19.
Friend murine leukemia virus (F-MuLV) is a highly leukemogenic replication-competent murine retrovirus. Both the F-MuLV envelope gene and the long terminal repeat (LTR) contribute to its pathogenic phenotype (A. Oliff, K. Signorelli, and L. Collins, J. Virol. 51:788-794, 1984). To determine whether the F-MuLV gag and pol genes also possess sequences that affect leukemogenicity, we generated recombinant viruses between the F-MuLV gag and pol genes and two other murine retroviruses, amphotrophic clone 4070 (Ampho) and Friend mink cell focus-inducing virus (Fr-MCF). The F-MuLV gag and pol genes were molecularly cloned on a 5.8-kilobase-pair DNA fragment. This 5.8-kilobase-pair F-MuLV DNA was joined to the Ampho envelope gene and LTR creating a hybrid viral DNA, F/A E+L. A second hybrid viral DNA, F/Fr ENV, was made by joining the 5.8-kilobase-pair F-MuLV DNA to the Fr-MCF envelope gene plus the F-MuLV LTR. F/A E+L and F/Fr ENV DNAs generated recombinant viruses upon transfection into NIH 3T3 cells. F/A E+L virus (F-MuLV gag and pol, Ampho env and LTR) induced leukemia in 20% of NIH Swiss mice after 6 months. Ampho-infected mice did not develop leukemia. F/Fr ENV virus (F-MuLV gag and pol, Fr-MCV env, F-MuLV LTR) induced leukemia in 46% of mice after 3 months. Recombinant viruses containing the Ampho gag and pol, Fr-MCF env, and F-MuLV LTR caused leukemia in 38% of mice after 6 months. We conclude that the F-MuLV gag and pol genes contain sequences that contribute to the pathogenicity of murine retroviruses. These sequences can convert a nonpathogenic virus into a leukemia-causing virus or increase the pathogenicity of viruses that are already leukemogenic.  相似文献   

20.
 The mean survival age of female AKR/J mice was significantly prolonged, the enlargement of thymus was markedly suppressed, and the proliferation of ecotropic and recombinant murine leukemia viruses (MuLV) was markedly inhibited when 8-week-old female AKR/J mice were injected intraperitoneally (i. p.) with heat-killed Lactobacillus casei cells twice weekly for 8 weeks. In contrast, such actions of heat-killed L. casei cells were not seen in 20-week-old female AKR/J mice. The leukemogenic activity of the cell-free extract of thymus from adult female AKR/J mice in newborn female AKR/J mice was drastically reduced by i. p. treatment with heat-killed L. casei cells. The difference in adjuvant effectiveness of heat-killed L. casei cells on 8- and 20-week-old animals may be dependent on the difference in the enhancing activity of the cell-mediated immune systems between the groups induced by heat-killed L. casei cells, and, as a result, on the difference in the degree of proliferation of ecotropic and recombinant MuLV in thymus, which consequently causes thymic lymphoma. Received: 13 February 1996 / Accepted: 18 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号