首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The purpose of this study was to determine whether the adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Regional stunning was produced by 15 min of coronary artery occlusion and 3 h of reperfusion (RP) in anesthetized open-chest pigs. In acute protection studies, animals were pretreated with saline, low-dose AMP-579 (15 microg/kg iv bolus 10 min before ischemia), or high-dose AMP-579 (50 microg/kg iv at 14 microg/kg bolus + 1.2 microg.kg(-1).min(-1) for 30 min before coronary occlusion). The delayed preconditioning effects of AMP-579 were evaluated 24 h after administration of saline vehicle or high-dose AMP-579 (50 microg/kg iv). Load-insensitive contractility was assessed by measuring regional preload recruitable stroke work (PRSW) and PRSW area. Acute preconditioning with AMP-579 dose dependently improved regional PRSW: 129 +/- 5 and 100 +/- 2% in high- and low-dose AMP-579 groups, respectively, and 78 +/- 5% in the control group at 3 h of RP. Administration of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.7 mg/kg) blocked the acute protective effect of high-dose AMP-579, indicating that these effects are mediated through A1 receptor activation. Delayed preconditioning with AMP-579 significantly increased recovery of PRSW area: 64 +/- 5 vs. 33 +/- 5% in control at 3 h of RP. In isolated perfused rat heart studies, kinetics of the onset and washout of AMP-579 A1 and A2a receptor-mediated effects were distinct compared with those of other adenosine receptor agonists. The unique nature of the adenosine agonist AMP-579 may play a role in its ability to induce delayed preconditioning against in vivo myocardial stunning.  相似文献   

2.
5-Amino-4-imidazolecarboxamide riboside (AICAr) or acadesine has been proposed to exert cardioprotection by enhancing adenosine production in ischemic myocardium. However, there are conflicting reports on acadesine's effects in ischemic myocardium and few studies in which myocardial adenosine levels have been measured. The purpose of this study was to determine whether acadesine increases interstitial fluid adenosine levels and attenuates myocardial stunning or potentiates the effects of adenosine in the intact pig. In pentobarbital-anesthetized pigs, myocardial stunning was induced by 10 min left anterior descending coronary artery occlusion and 90 min reperfusion. Regional ventricular function was assessed by measuring systolic wall thickening, and interstitial nucleosides were estimated by cardiac microdialysis. Control hearts were compared with hearts treated with acadesine, adenosine, and adenosine plus acadesine. Adenosine pretreatment (100 microg x kg(-1) x min(-1), intracoronary) immediately prior to ischemia increased interstitial adenosine levels 9-fold and improved postischemic functional recovery from a control value of 17.6 +/- 4.1% to 43.6 +/- 3.4% of preischemic systolic wall thickening. In contrast, acadesine (20 mg/kg i.v. bolus 10 min prior to ischemia + 0.5 mg x kg (-1) x min(-1), i.v. infusion through 60 min reperfusion) had no effect on interstitial fluid adenosine levels or the recovery of regional function (21.5 +/- 5.9% recovery), nor were the functional effects of adenosine potentiated by acadesine. These findings indicate that acadesine does not enhance myocardial adenosine levels, attenuate myocardial stunning, or potentiate the cardioprotective effects of adenosine in the pig.  相似文献   

3.
The intermediary metabolite pyruvate has been shown to exert significant beneficial effects in in vitro models of myocardial oxidative stress and ischemia-reperfusion injury. However, there have been few reports of the ability of pyruvate to attenuate myocardial stunning or reduce infarct size in vivo. This study tested whether supraphysiological levels of pyruvate protect against reversible and irreversible in vivo myocardial ischemia-reperfusion injury. Anesthetized, open-chest pigs (n = 7/group) underwent 15 min of left anterior descending coronary artery (LAD) occlusion and 3 h of reperfusion to induce stunning. Load-insensitive contractility measurements of regional preload recruitable stroke work (PRSW) and PRSW area (PRSWA) were generated. Vehicle or pyruvate (100 mg/kg i.v. bolus + 10 mg x kg(-1) x min(-1) intra-atrial infusion) was administered during ischemia and for the first hour of reperfusion. In infarct studies, pigs (n = 6/group) underwent 1 h of LAD ischemia and 3 h of reperfusion. Group I pigs received vehicle or pyruvate for 30 min before and throughout ischemia. In group II, the infusion was extended through 1 h of reperfusion. In the stunning protocol, pyruvate significantly improved the recovery of PRSWA at 1 h (50 +/- 4% vs. 23 +/- 3% in controls) and 3 h (69 +/- 5% vs. 39 +/- 3% in controls) reperfusion. Control pigs exhibited infarct sizes of 66 +/- 1% of the area at risk. The pyruvate I protocol was associated with an infarct size of 49 +/- 3% (P < 0.05), whereas the pyruvate II protocol was associated with an infarct size of 30 +/- 2% (P < 0.05 vs. control and pyruvate I). These findings suggest that pyruvate attenuates stunning and decreases myocardial infarction in vivo in part by reduction of reperfusion injury. Metabolic interventions such as pyruvate should be considered when designing the optimal therapeutic strategies for limiting myocardial ischemia-reperfusion injury.  相似文献   

4.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

5.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

6.
Postconditioning, i.e., brief intermittent episodes of myocardial ischemia-reperfusion performed at the onset of reperfusion, reduces infarct size after prolonged ischemia. Our goal was to determine whether postconditioning is protective against myocardial stunning. Accordingly, conscious chronically instrumented dogs (sonomicrometry, coronary balloon occluder) were subjected to a control sequence (10 min coronary artery occlusion, CAO, followed by coronary artery reperfusion, CAR) and a week apart to postconditioning with four cycles of brief CAR and CAO performed at completion of the 10 min CAO. Three postconditioning protocols were investigated, i.e., 15 s CAR/15 s CAO (n=5), 30 s CAR/30 s CAO (n=7), and 1 min CAR/1 min CAO (n=6). Left ventricular wall thickening was abolished during CAO and similarly reduced during subsequent stunning in control and postconditioning sequences (e.g., at 1 h CAR, 33+/-4 vs. 34+/-4%, 30+/-4 vs. 30+/-4%, and 33+/-4 vs. 32+/-4% for 15 s postconditioning, 30 s postconditioning, and 1 min postconditioning vs. corresponding control, respectively). We confirmed this result in anesthetized rabbits by demonstrating that shortening of left ventricular segment length was similarly depressed after 10 min CAO in control and postconditioning sequences (4 cycles of 30 s CAR/30 s CAO). In additional rabbits, the same postconditioning protocol significantly reduced infarct size after 30 min CAO and 3 h CAR (39+/-7%, n=6 vs. 56+/-4%, n=7 of the area at risk in postconditioning vs. control, respectively). Thus, contrasting to its beneficial effects on myocardial infarction, postconditioning does not protect against myocardial stunning in dogs and rabbits. Conversely, additional episodes of ischemia-reperfusion with postconditioning do not worsen myocardial stunning.  相似文献   

7.
Late preconditioning (PC) against myocardial stunning develops after coronary artery occlusion (CAO) at rest and subsequent reperfusion. We investigated whether late PC occurs after exercise-induced ischemia (high-flow ischemia) in dogs. A circumflex coronary artery stenosis (by using occluders) was set up before the onset of treadmill exercise in nine chronically instrumented dogs to suppress exercise-induced increase in mean coronary blood flow velocity (CBFV, Doppler) without simultaneously affecting left ventricular (LV) wall thickening (Wth) at rest. Two similar exercises were performed 24 h apart. On day 1, LV Wth was reduced by 84 +/- 5% (P < 0.01), and exercise-induced increases in transmural myocardial blood flow (MBF, fluorescent microspheres) in the ischemic zone were blunted. LV Wth was depressed throughout the first 10 h and returned to its baseline value after 24 h. On day 2, changes in LV Wth and MBF were similar as was the time course for LV Wth recovery, indicating lack of late PC. Also, CBFV responses to acetylcholine, nitroglycerin, and reactive hyperemia (20-s CAO) were not significantly different on days 1 and 2. Similar results were obtained in a subgroup of four additional dogs with more severe stenosis during exercise. Late PC against myocardial stunning was confirmed to occur in a model of 10-min CAO followed by coronary artery reperfusion (CAR) in another four dogs. Thus in contrast with CAO at rest followed by CAR, severe myocardial ischemia in coronary flow-limited exercising dogs does not induce late PC against myocardial stunning.  相似文献   

8.
We sought to determine whether administration of a very low, nonvasodilating dose of a highly selective adenosine A(2A) receptor agonist (ATL-193 or ATL-146e) would be cardioprotective in a canine model of myocardial stunning produced by multiple episodes of transient ischemia. Twenty-four anesthetized open-chest dogs underwent either 4 (n=12) or 10 cycles (n=12) of 5-min left anterior descending coronary artery (LAD) occlusions interspersed by 5 or 10 min of reperfusion. Left ventricular thickening was measured from baseline through 180 min after the last occlusion-reperfusion cycle. Regional flow was measured with microspheres. In 12 of 24 dogs, A(2A) receptor agonist was infused intravenously beginning 2 min prior to the first occlusion and continuing throughout reperfusion at a dose below that which produces vasodilatation (0.01 microg x kg(-1) x min(-1)). Myocardial flow was similar between control and A(2A) receptor agonist-treated animals, confirming the absence of A(2) receptor agonist-induced vasodilatation. During occlusion, there was severe dyskinesis with marked LAD zone thinning in all animals. After 180 min of reperfusion following the last cycle, significantly greater recovery of LAD zone thickening was observed in A(2A) receptor agonist-treated vs. control animals in both the 4-cycle (91 +/- 7 vs. 56 +/- 12%, respectively; P<0.05) and the 10-cycle (65 +/- 9 vs. 8 +/- 16%, respectively; P<0.05) occlusion groups. The striking amount of functional recovery observed with administration of low, nonvasodilating doses of adenosine A(2A) agonist ATL-193 or ATL-146e supports their further evaluation for the attenuation of postischemic stunning in the clinical setting.  相似文献   

9.
The lipophilic antioxidant Trolox C, a vitamin E analog, was administered to isolated, buffer-perfused rabbit hearts subjected to 25 min of global stop-flow ischemia and 30 min of reperfusion. In six hearts, Trolox C (200 microM) was infused for 15 min immediately prior to ischemia and for the first 15 min of reperfusion. Six control hearts received only vehicle. Gas chromatography analysis confirmed that effective myocardial levels of Trolox were attained. At 30 min reperfusion, the recovery of left ventricular developed pressure was 56 +/- 3% of baseline in control hearts versus 70 +/- 4% in Trolox-treated hearts (p < .01). There was also significant improvement in recovery of Trolox-treated hearts in diastolic pressure and both maximum and minimum values of the first derivative of left ventricular pressure (dP/dt). Creatine phosphokinase release into the coronary effluent at 30 min of reperfusion was 16.5 +/- 8.4 IU/min in untreated and 6.3 +/- 1.0 IU/min (p < .05) in Trolox-treated hearts. Thus Trolox C, a lipophilic antioxidant, attenuated myocardial injury during stop-flow ischemia and reperfusion.  相似文献   

10.
Nine patients with coronary artery disease and normal left ventricular (LV) function underwent two episodes of dobutamine-induced ischemia to determine whether repeated episodes of ischemia lead to cumulative stunning. Positron emission tomography (PET) and oxygen 15-labeled H(2)O was used to assess myocardial blood flow (MBF) at baseline, peak stress, and after stress for each ischemic episode. Quantitative echocardiographic assessment of global ejection fraction (EF) and regional systolic function (SF) was performed at rest and regular intervals after dobutamine. SF was assessed for regions subtended by a coronary artery with a >70% diameter stenosis. Both EF and SF were more severely impaired 45 min after the second episode of stress compared with 45 min after the first (both P < 0.01), despite no difference in duration of the two dobutamine infusions or MBF at peak stress (1.72 vs. 1.69). After both episodes of ischemia, when LV function was impaired but subsequently recovered, MBF (1.15 +/- 0.39 and 1.20 +/- 0.43, respectively) was no different to baseline MBF (1.02 +/- 0.35), confirming that repeated episodes of dobutamine-induced ischemia lead to cumulative myocardial stunning.  相似文献   

11.
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

12.
We have previously shown that an intravenous infusion of adenosine and lidocaine (AL) solution protects against death and severe arrhythmias and reduces infarct size in the in vivo rat model of regional ischemia. The aim of this study was to examine the relative changes of myocardial high-energy phosphates (ATP and PCr) and pH in the left ventricle during ischemia-reperfusion using 31P NMR in AL-treated rats (n = 7) and controls (n = 6). The AL solution (A: 305 microg.(kg body mass)-1.min-1; L: 608 microg.(kg body mass)-1.min-1) was administered intravenously 5 min before and during 30 min coronary artery ligation. Two controls died from ventricular fibrillation; no deaths were recorded in AL-treated rats. In controls that survived, ATP fell to 73% +/- 29% of baseline by 30 min ischemia and decreased further to 68% +/- 28% during reperfusion followed by a sharp recovery at the end of the reperfusion period. AL-treated rats maintained relatively constant ATP throughout ischemia and reperfusion ranging from 95% +/- 6% to 121% +/- 10% of baseline. Owing to increased variability in controls, these results were not found to be significant. In contrast, control [PCr] was significantly reduced in controls compared with AL-treated rats during ischemia at 10 min (68% +/- 7% vs. 99% +/- 6%), at 15 min (68% +/- 10% vs. 93% +/- 2%), and at 20 min (67% +/- 15% vs. 103% +/- 5%) and during reperfusion at 10 min (56% +/- 22% vs. 99% +/- 7%), at 15 min (60% +/- 10% vs. 98% +/- 7%), and at 35 min (63% +/- 14% vs. 120% +/- 11%) (p < 0.05). Interestingly, changes in intramyocardial pH between each group were not significantly different during ischemia and fell by about 1 pH unit to 6.6. During reperfusion, pH in AL-treated rats recovered to baseline in 5 min but not in controls, which recovered to only around pH 7.1. There was no significant difference in the heart rate, mean arterial pressure, and rate-pressure product between the controls and AL treatment during ischemia and reperfusion. We conclude that AL cardioprotection appears to be associated with the preservation of myocardial high-energy phosphates, downregulation of the heart at the expense of a high acid-load during ischemia, and with a rapid recovery of myocardial pH during reperfusion.  相似文献   

13.
Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide (FAD) autofluorescence in intact hearts. A mediating role of ATP-sensitive K(+) (K(ATP)) channel opening was investigated. NADH and FAD fluorescence was measured in the left ventricular wall of guinea pig isolated hearts assigned to five groups of eight animals each: hypothermia alone, hypothermia with ischemia, IPC with cold ischemia, 5-hydroxydecanoic acid (5-HD) alone, and 5-HD with IPC and cold ischemia. IPC consisted of two 5-min periods of warm global ischemia spaced 5 min apart and 15 min of reperfusion before 2 h of ischemia at 27 degrees C and 2 h of warm reperfusion. The K(ATP) channel inhibitor 5-HD was perfused from 5 min before until 5 min after IPC. IPC before 2 h of ischemia at 27 degrees C led to better recovery of function and less tissue damage on reperfusion than did 27 degrees C ischemia alone. These improvements were preceded by attenuated increases in NADH and decreases in FAD during cold ischemia and the reverse changes during warm reperfusion. 5-HD blocked each of these changes induced by IPC. This study indicates that IPC induces additive cardioprotection with mild hypothermic ischemia by improving mitochondrial bioenergetics during and after ischemia. Because effects of IPC on subsequent changes in NADH and FAD were inhibited by 5-HD, this suggests that mitochondrial K(ATP) channel opening plays a substantial role in improving mitochondrial bioenergetics throughout mild hypothermic ischemia and reperfusion.  相似文献   

14.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

15.
NADH increases during ischemia because O(2) shortage limits NADH oxidation at the electron transport chain. Ischemic (IPC) and anesthetic preconditioning (APC) attenuate cardiac reperfusion injury. We examined whether IPC and APC similarly alter NADH, i.e., mitochondrial metabolism. NADH fluorescence was measured at the left ventricular wall of 40 Langendorff-prepared guinea pig hearts. IPC was achieved by two 5-min periods of ischemia and APC by exposure to 0.5 or 1.3 mM sevoflurane for 15 min, each ending 30 min before 30 min of global ischemia. During ischemia, NADH initially increased in nonpreconditioned control hearts and then gradually declined below baseline levels. This increase in NADH was lower after APC but not after IPC. The subsequent decline was slower after IPC and APC. On reperfusion, NADH was less decreased after IPC or APC, mechanical and metabolic functions were improved, and infarct size was lower compared with controls. Our results indicate that IPC and APC cause distinctive changes in mitochondrial metabolism during ischemia and thus lead to improved function and tissue viability on reperfusion.  相似文献   

16.
Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0+/-2.6% of the risk zone in controls and was 10.3+/-2.2% in PC hearts (p<0.001). Neither the CK2 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.  相似文献   

17.
To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.  相似文献   

18.
We tested the hypothesis that atrial natriuretic peptide (ANP) would decrease both the effects of myocardial stunning and oxygen consumption in rabbit hearts. In two groups of anesthetized open-chest rabbits, myocardial stunning was produced by two 15 min occlusions of the left anterior descending (LAD) artery separated by 15 min of reperfusion. Either ANP (0.2 mg) or vehicle (lactated Ringers) was then injected into the affected area of the left ventricle. In a third group, ANP was injected into the LAD region of non-stunned rabbits. Hemodynamic (heart rate, aortic and left ventricular pressures) and functional (wall thickening (WT), delay of onset of WT, and rate of WT) parameters were measured. Coronary blood flow (microspheres) and O2 extraction (microspectrophotometry) were used to determine myocardial O2 consumption. Stunning was demonstrated by an increase in the time delay to contraction and depressed WT. In the control group, baseline delay to contraction was 25+/-7 ms, and this increased to 84+/-16 following stunning and vehicle administration. In the ANP group, baseline delay was 20+/-6 at baseline and after stunning and ANP administration it was 30+/-7. Wall thickening decreased by approximately 30% with stunning and vehicle but only 8% in the ANP treated hearts. Stunning did not affect regional O2 consumption (6.0+/-1.1 stunned vs. 7.4+/-1.2 mlO2/min/100g non-stunned). ANP administration did not affect O2 consumption (7.3+/-1.7 stunned vs. 6.4+/-1.0 non-stunned). We therefore concluded that ANP administration reversed the effects of stunning without alteration in local O2 consumption in stunned myocardium.  相似文献   

19.
In a previous report, we have demonstrated that simultaneous inhibition of nucleoside transport and adenosine deaminase accumulates endogenous adenosine and protects the myocardium against stunning. The differential cardioprotective effects of erythro-9(2-hydroxy-3-nonyl)-adenine (EHNA), a potent inhibitor of adenosine deamination but not transport, and p-nitrobenzylthioinosine (NBMPR), a selective blocker of adenosine and inosine transport, are not known.Thirty-seven anaesthetized adult dogs were instrumented to monitor left ventricular performance using sonomicrometery. Dogs were randomly assigned into four groups. The control group (n = 8) received only the vehicle solution. Treated groups received saline containing 100 M EHNA (EHNA-group, n = 7), 25 M NBMPR (NBMPR-group, n = 7), or a combination of 100 M EHNA and 25 M NBMPR (EHNA/NBMPR-group, n = 10). Hearts were subjected to 30 min of normothermic global ischaemia and 60 min of reperfusion while on bypass. Adenine nucleotides, nucleosides, oxypurines and NAD+ were determined in extracts of transmural myocardial biopsies using HPLC. TTC staining revealed the absence of necrosis in this model.Drug administration did not affect myocardial ATP metabolism and cardiac function in the normal myocardium. Ischemia caused about 50% ATP depletion and accumulation of nucleosides. The ratio between adenosine/inosine at the end of ischemia was 1:10, 1:1, 1:1 and 10:1 in the control, EHNA-, NBMPR- and EHNA/NBMPR-group, respectively. Upon reperfusion, both nucleosides washed out from the myocardium in the control and EHNA-group while retained in the myocardium in the NBMPR and EHNA/NBMPR groups. Ventricular dysfunction 'stunning' persisted in the control group (52%) and in the EHNA-treated group (32%) after 30 min of reperfusion. Significant improvement of function was observed in the EHNA group only after 60 min of reperfusion. LV function recovered in the NBMPR- and EHNA/NBMPR-treated groups during reperfusion. ATP recovery occurred only when animals were pretreated with the combination of EHNA/NBMPR and remained depressed in the control group and EHNA and NBMPR-treated groups. At post mortem, TTC staining revealed the absence of myocardial necrosis.Superior myocardial protection was observed with inhibition of nucleoside transport by NBMPR alone or in combination with inhibition of adenosine deaminase by EHNA. Selective blockade of nucleoside transport by NBMPR is more cardioprotective than inhibition of adenosine deaminase alone in attenuating myocardial stunning. It is not known why EHNA partially inhibit adenosine deaminase, in vivo.  相似文献   

20.
Extracellular ATP plays an important role in ischemic preconditioning (IPC) through the activation of P(2y) purinoceptors. This study examined whether ATP-stimulated P(2y) purinoceptors are coupled to pertussis toxin (PTX)-insensitive G protein and whether activation of this pathway enhances myocardial protection afforded by IPC. The rat was treated with PTX for 48 h, and the heart was then isolated and buffer perfused. The heart underwent IPC by three cycles of 5-min ischemia and 5-min reperfusion before 25 min of global ischemia. Isovolumic left ventricular function was measured, and functional recovery at 30 min after reperfusion was taken as an end point of myocardial protection. PTX pretreatment partially inhibited functional protection by IPC. Treatment with 100 microM 8-(p-sulfophenyl) theophylline (SPT) during IPC had no further effect on PTX-induced inhibition of functional protection by IPC, whereas suramin (300 microM) or reactive blue (RB) (10 microM) completely abolished myocardial protection in the preconditioned heart pretreated with PTX. Supplementation with adenosine (30 microM), ATP (30 microM), or UTP (50 microM) significantly enhanced IPC-induced functional protection, although preconditioning with these nucleotides without IPC had no protective effect. Adenosine-enhanced IPC was inhibited by pretreatment with PTX and SPT but not by suramin or RB, whereas ATP-enhanced IPC was inhibited by suramin or RB in combination with PTX pretreatment. On the other hand, UTP-enhanced IPC was not affected by PTX pretreatment but was inhibited by suramin or RB. Adenosine supplemented IPC without PTX pretreatment and ATP supplemented IPC with PTX pretreatment were not affected by nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (100 microM). Although the protein kinase C inhibitor Ro318425 (0.3 microM) or tyrosine kinase inhibitor genistein (50 microM) had no significant effect on the functional protection afforded by adenosine-supplemented IPC without PTX pretreatment and ATP-supplemented IPC with PTX pretreatment, the combination of Ro318425 and genistein attenuated functional protection afforded by both the purinoceptor agonist-supplemented IPC. These results suggest the crucial involvement of PTX-sensitive and -insensitive G protein coupled purinoceptors in enhanced IPC by supplementation with adenosine, ATP, and UTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号