首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
AIMS: To contribute to an understanding of the phenomena related to the effect of low electric current (LEC) in grape must fermentation during laboratory and pilot plant scale winemaking, with selected co-culture yeasts (Saccharomyces cerevisiae strain 404 and Hanseniaspora guilliermodii strain 465). METHODS AND RESULTS: LEC (10, 30, 50 and 100 mA) was applied to fresh grape must as an alternative method to the usual addition of SO2. Parameters such as polarity, treatment duration (24-96 h) and type of inoculum yeast were varied one at a time. LEC decreased the survival time and increased the death rate of H. guilliermondii strain 465 in co-cultures, whereas it did not affect the growth and survival of S. cerevisiae strain 40. A final comparison was made of the main physico-chemical parameters on wine obtained after the different tests. CONCLUSIONS: The results have demonstrated that the low voltage treatment using a pair of graphite electrodes had a positive effect on grape juice fermentation (yeast microflora) during the early stages of winemaking, even with the potential of being an alternative method to the usual addition of SO2. SIGNIFICANCE AND IMPACT OF THE STUDY: These results could be of significant importance in developing new winemaking technologies for an innovative yeast fermentation control process for 'biological wine'.  相似文献   

2.
Aims: The objective of this study was to investigate the inactivation of a selected yeast Dekkera bruxellensis strain 4481 in red wine by application of low electric current treatment (LEC). Methods and Results: LEC (200 mA) was applied for 60 days to a red wine, Montepulciano d’Abruzzo, in an alternative strategy to the SO2 addition during wine storage. The LEC effect on both cell activity and microflora viability was assessed. LEC decreased significantly the survival viable cells and increased the death rate of D. bruxellensis strain 4481 yeast. A final comparison was made of the main physico‐chemical parameters of the wine after the different treatments. The study suggests the importance of an appropriate LEC treatment which limits wine deterioration in terms of off‐flavours synthesis. Conclusions: The results demonstrate that the growth of undesirable Dekkera can be inhibited by low voltage treatment; LEC was shown to be useful to prevent wine spoilage and has the potential of being a concrete alternative method for controlling wine spoilage. Significance and Impact of the Study: Wine spoilage can be avoided by preventing the growth of undesirable Dekkera yeasts, through the effective use of LEC in the winemaking process.  相似文献   

3.
二氧化硫生物学研究进展:从毒理学到生理学   总被引:1,自引:0,他引:1  
Meng ZQ  Li JL 《生理学报》2011,63(6):593-600
本文以作者20余年的系列研究为基础,对二氧化硫(SO2)生物学研究进展进行了综述.首先,总结近年来SO2的毒理学作用及其机制的研究;其次,评述SO2作为一种新型气体信号分子的生理学作用及SO2供体方面的最新研究进展;最后介绍SO2的病理生理学作用的研究进展.  相似文献   

4.
Effects of low electric current (LEC) treatment on pure bacterial cultures   总被引:1,自引:0,他引:1  
AIMS: This research focused on the effects of low electric current (LEC) on the cell viability and metabolic activity of Escherichia coli and Bacillus cereus. METHODS AND RESULTS: Different LEC intensities at fixed amperage were applied, employing either graphite or copper electrode pairs, and the effects were determined by conventional cultural methods and bioindicators. On E. coli, the LEC with graphite electrodes at 5 and 10 mA led to no significant variation, but at 20 and 40 mA there was increasing inhibition of both the enzymatic activities and growth, and a reduction in ATP content. On B. cereus, similar experiments at the lower amperages did not have any inhibitor effects, however, the 40 mA current stimulated growth, ATP content and some enzymatic activities. The LEC treatment using copper electrodes caused, already at 5 mA, inhibition of bacterial growth and metabolic and enzymatic activities in both E. coli and B. cereus. CONCLUSIONS: On the basis of the obtained results using different amperages and electrodes, we can conclude that E. coli seem to be more sensitive compared with B. cereus. SIGNIFICANCE AND IMPACT OF THE STUDY: The study increases the knowledge on LEC treatment effects on the pure bacterial cultures.  相似文献   

5.
Electrotherapy with direct current delivered through implanted electrodes is used for local control of solid tumors in both preclinical and clinical studies. The aim of this research is to develop a solution method for obtaining a three-dimensional analytical expression for potential and electric current density as functions of direct electric current intensity, differences in conductivities between the tumor and the surrounding healthy tissue, and length, number and polarity of electrodes. The influence of these parameters on electric current density in both media is analyzed. The results show that the electric current density in the tumor is higher than that in the surrounding healthy tissue for any value of these parameters. The conclusion is that the solution method presented in this study is of practical interest because it provides, in a few minutes, a convenient way to visualize in 3D the electric current densities generated by a radial electrode array by means of the adequate selection of direct current intensity, length, number, and polarity of electrodes, and the difference in conductivity between the solid tumor and its surrounding healthy tissue.  相似文献   

6.
Fluoride (F) and sulfur dioxide (SO2) are the two common environmental contaminants that are associated with neurotoxicity. The present study was conducted to explore individual and combined exposure effects of F and SO2 on histological alteration and DNA damage in rat brain. For this, male Wistar albino rats were exposed to sodium fluoride (100 mg/L NaF) and sulfur dioxide (39.3 mg/m3) individually and in combination for 8 weeks. Histological alteration in brain is evaluated by hematoxylin–eosin staining, showed shrunken neurons, darkly stained small nucleus and decreased cell numbers in F and SO2 exposed groups. The effect of F and SO2 on DNA damage was assessed by comet assay. The results showed an increase in ratio of tailing and tail length in F or/and SO2 administered rats. In addition, the proportion of grade II and III were also increased in individual and combined exposed groups. Compared with the individual exposure, the proportion the grade III was significantly high in combined exposure, suggesting a synergistic effect of F and SO2. These results indicate that the brain was more susceptible to the toxic effects of F and SO2. And combined exposure to these pollutants can lead more pronounced toxic effects on brain.  相似文献   

7.
The effects of ozone or sulfur dioxide on antioxidant enzymes were investigated in Arabidopsis thaliana. Plants were fumigated with 0.1–0.15 ppm ozone or sulfur dioxide up to about 1 week in an environment-controlled chamber. Both pollutants increased the activities of ascorbate peroxidase and guaiacol per-oxidase in leaves, but had little effect on the activities of superoxide dismutase, catalase, monodehydroascorbate reductase, dehydroascorbate reductase or glutathione reductase. Ozone was more effective than sulfur dioxide in increasing the activities of the peroxidases. Ascorbate peroxidase activity increased 1.8-fold without a lag period during fumigation with 0.1 ppm ozone, while guaiacol peroxidase activity increased 4.4-fold with a 1-day lag. Expression of the APX1 gene encoding cytosolic ascorbate peroxidase was further investigated. Its protein levels in leaves exposed to 0.1 ppm ozone for 4 or 8 days were 1.5-fold higher than in controls. Both ozone and sulfur dioxide elevated APX1 mRNA levels in leaves at 4 and 7 days, whereas at 1 day only ozone was effective. The induction of APX1 mRNA levels by ozone (3.4- to 4.1-fold) was more prominent than that by sulfur dioxide (1.6-to 2.6-fold). The APX1 mRNA level increased by day and decreased by night. Exposure of plants to 0.1 ppm ozone enhanced the APX1 mRNA level within 3 h, which showed a diurnal rhythm similar to that of the control. These results demonstrate that near-ambient concentrations of ozone as well as similar concentrations of sulfur dioxide can induce APX1 gene expression in A. thaliana.Environmental Biology Division  相似文献   

8.
The thermographic method for determining specific absorption rate (SAR) in animals and models of tissues or bodies exposed to electromagnetic fields was applied to the problem of quantifying the current distribution in homogeneous bodies of arbitrary shape exposed to 60-Hz electric fields. The 60-Hz field exposures were simulated by exposing scale models of high electrical conductivity to 57.3-MHz VHF fields of high strength in a large 3.66 × 3.66 × 2.44-m TE101 mode resonant cavity. After exposure periods of 2–30 s, the models were quickly disassembled so that the temperature distribution (maximum value up to 7 °C) along internal cross-sectional planes of the model could be recorded thermographically. The SAR, W′, calculated from the temperature changes at any point in the scale model was used to determine the SAR, W, for a full-scale model exposed to a 60-Hz electric field of the same strength by the relation W = (60/ f2 · (σ′/σ) · W′ where f′ is the model exposure frequency, σ′ is the conductivity of the scale model at the VHF exposure frequency, and σ is the conductivity of the full-scale subject at 60 Hz. The SAR was used to calculate either the electric field strength or the current density for the full-scale subject. The models were used to simulate the exposure of the full-scale subject located either in free space or in contact with a conducting ground plane. Measurements made on a number of spheroidal models with axial ratios from 1 to 10 and conductivity from 1 to 10 s/m agreed well with theoretical predictions. Maximum current densities of 200 nA/cm2 predicted in the ankles of man models and 50 nA/cm2 predicted in the legs of pig models exposed to 60-Hz fields at 1kV/m agreed well with independent measurements on full-scale models.  相似文献   

9.
There are large disparities between basic restrictions for exposure to extremely low-frequency (0-3 kHz) Electric and Magnetic Fields set by two major international bodies. Both bodies agree that these basic restrictions should prevent neuro-stimulatory effects: the retinal phosphene at frequencies up to a few hundred Hertz and peripheral nervous stimulation (PNS) at higher frequencies. The disparity arises from differences in estimated thresholds and frequency dependence, and whether restrictions should be of tissue induced current density or electric field. This paper argues that the latter metric more directly relates to neurostimulatory processes. By analysing available literature, a threshold for retinal phosphenes occurrence is found to be 56 mV/m (95% Confidence Interval 2-1330 mV/m), with a characteristic frequency of 20 Hz. Similarly, the smallest PNS sensation threshold is identified at 2 V/m (characteristic frequency above 3 kHz). In the case of the former, the large range of uncertainty suggests a 'power of ten' value of 100 mV/m. For the latter, because of the small margin between sensation and pain threshold, and because of the large individual variation, the smallest estimate of sensation threshold (2 V/m) represents a basic restriction with precaution incorporated.  相似文献   

10.
The short-term stimulation of the net rate of carbon dioxide exchange of leaves by elevated concentrations of CO2 usually observed in C3 plants sometimes does not persist. Experiments were conducted to test whether the patterns of response to the environment during growth were consistent with the hypotheses that photosynthetic adjustment to elevated CO2 concentration is due to (1) feedback inhibition or (2) nutrient stress. Soybean [Glycine max (L.) Merr. cv. Williams] and sugar beet (Best vulgaris L. cv. Mono Hye-4) were grown from seed at 350 and 700 μl? CO2, at 20 and 25°C, at a photon flux density of 0.5 and 1.0 mmol m?2 S?1 and with three nutrient regimes until the third trifoliolate leaf of soybean or the sixth leaf of sugar beet had finished expanding. Net rates of CO2 exchange of the most recently expanded leaves were then measured at both 350 and 700 μl 1?1 CO2. Plants grown at the elevated CO2 concentration had net rates of leaf CO2 exchange which were reduced by 33% in sugar beet and 23% in soybean when measured at 350 μl 1?1 CO2 and when averaged over all treatments. Negative photosynthetic adjustment to elevated CO2 concentration was not greater at 20 than at 25°C, was not greater at a photon flux density of 1.0 than at 0.5 mmol m?2 S?1 and was not greater with limiting nutrients. Furthermore, in soybean, negative photosynthetic adjustment could be induced by a single night at elevated CO2 concentration, with net rates of CO2 exchange the next day equal to those of leaves of plants grown from seed at the elevated concentration of CO2. These patterns do not support either the feedback-inhibition or the nutrient-stress hypothesis of photosynthetic adjustment to elevated concentrations of CO2.  相似文献   

11.
The action of interferential current (IFC), an amplitude-modulated 4000 kHz current used in therapeutic applications, upon intracellular calcium, adenosine 3′:5′-cyclic monophosphate (cAMP), and guanosine 3′:5′-cyclic monophosphate (cGMP) was investigated. Human promyelocytes (HL-60) were differentiated to granulocytes by dimethylsulfoxide (DMSO) treatment and exposed for 5 min at 25, 250, and 2500 μA/cm2 current density. No significant changes in cytosolic free calcium were detected as a function of modulation frequency of the IFC. However, intracellular cAMP reacted in a complex way to modulation frequency, resulting in stimulations and depressions within the range of frequencies studied (0–125 Hz). The “windows” of modulation frequency, where statistically significant increases or decreases in cAMP were noted, coincided with those published earlier for mouse fibroblasts. Cellular cGMP content was always lowered by IFC treatment. Furthermore, no significant influence of IFC current density upon the three second messengers was noted. These results, which also include data relating to treatment with sinusoidal 50 Hz current, contribute to a more detailed understanding of the primary biophysical mechanisms of signal transduction by time-varying electric fields. Bioelectromagnetics 19:452–458, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
Iron–sulfur clusters are one of the most ubiquitous redox centers in biology. Ironically, iron-sulfur clusters are highly sensitive to reactive oxygen species. Disruption of iron-sulfur clusters will not only change the activity of proteins that host iron–sulfur clusters, the iron released from the disrupted iron–sulfur clusters will further promote the production of deleterious hydroxyl free radicals via the Fenton reaction. Here, we report that ferritin A (FtnA), a major iron-storage protein in Escherichia coli, is able to scavenge the iron released from the disrupted iron–sulfur clusters and alleviates the production of hydroxyl free radicals. Furthermore, we find that the iron stored in FtnA can be retrieved by an iron chaperon IscA for the re-assembly of the iron–sulfur cluster in a proposed scaffold IscU in the presence of the thioredoxin reductase system which emulates normal intracellular redox potential. The results suggest that E. coli FtnA may act as an iron buffer to sequester the iron released from the disrupted iron–sulfur clusters under oxidative stress conditions and to facilitate the re-assembly of the disrupted iron–sulfur clusters under normal physiological conditions.  相似文献   

14.
Xu L  Chen SY  Nie WH  Jiang XL  Yao YG 《遗传学报》2012,39(3):131-137
Tree shrew(Tupaia belangeri) is currently placed in Order Scandentia and has a wide distribution in Southeast Asia and Southwest China.Due to its unique characteristics,such as small body size,high brain-to-body mass ratio,short reproductive cycle and life span,and low-cost of maintenance,tree shrew has been proposed to be an alternative experimental animal to primates in biomedical research.However,there are some debates regarding the exact phylogenetic affinity of tree shrew to primates.In this study,we determined the mtDNA entire genomes of three Chinese tree shrews(T.belangeri chinensis) and one Malayan flying lemur(Galeopterus variegatus).Combined with the published data for species in Euarchonta,we intended to discern the phylogenetic relationship among representative species of Dermoptera,Scandentia and Primates.The mtDNA genomes of Chinese tree shrews and Malayan flying lemur shared similar gene organization and structure with those of other mammals.Phylogenetic analysis based on 12 concatenated mitochondrial proteinencoding genes revealed a closer relationship between species of Scandentia and Glires,whereas species of Dermoptera were clustered with Primates.This pattern was consistent with previously reported phylogeny based on mtDNA data,but differed from the one reconstructed on the basis of nuclear genes.Our result suggested that the matrilineal affinity of tree shrew to primates may not be as close as we had thought.The ongoing project for sequencing the entire genome of Chinese tree shrew will provide more information to clarify this important issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号