首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that angiotensin II stimulates an increase in nitric oxide production in pulmonary artery endothelial cells. The aims of this study were to determine which receptor subtype mediates the angiotensin II-dependent increase in nitric oxide production and to investigate the roles of the angiotensin type 1 and type 2 receptors in modulating angiotensin II-dependent vasoconstriction in pulmonary arteries. Pulmonary artery endothelial cells express both angiotensin II type 1 and type 2 receptors as assessed by RT-PCR, Western blot analysis, and flow cytometry. Treatment of the endothelial cells with PD-123319, a type 2 receptor antagonist, prevented the angiotensin II-dependent increase in nitric oxide synthase mRNA, protein levels, and nitric oxide production. In contrast, the type 1 receptor antagonist losartan enhanced nitric oxide synthase mRNA levels, protein expression, and nitric oxide production. Pretreatment of the endothelial cells with either PD-123319 or an anti-angiotensin II antibody prevented this losartan enhancement of nitric oxide production. Angiotensin II-dependent enhanced hypoxic contractions in pulmonary arteries were blocked by the type 1 receptor antagonist candesartan; however, PD-123319 enhanced hypoxic contractions in angiotensin II-treated endothelium-intact vessels. These data demonstrate that angiotensin II stimulates an increase in nitric oxide synthase mRNA, protein expression, and nitric oxide production via the type 2 receptor, whereas signaling via the type 1 receptor negatively regulates nitric oxide production in the pulmonary endothelium. This endothelial, type 2 receptor-dependent increase in nitric oxide may serve to counterbalance the angiotensin II-dependent vasoconstriction in smooth muscle cells, ultimately regulating pulmonary vascular tone.  相似文献   

2.
We have previously reported that angiotensin II (ANG II) stimulated Src tyrosine kinase via a pertussis toxin-sensitive type 2 receptor, which, in turn, activates MAPK, resulting in an increase in nitric oxide synthase (NOS) expression in pulmonary artery endothelial cells (PAECs). The present study was designed to investigate the pathway by which ANG II activates Src leading to an increase in ERK1/ERK2 phosphorylation and an increase in NOS protein in PAECs. Transfection of PAECs with Gi3 dominant negative (DN) cDNA blocked the ANG II-dependent activation of Src, ERK1/ERK2 phosphorylation, and increase in NOS expression. ANG II stimulated an increase in tyrosine phosphorylation of sequence homology of collagen (Shc; 15 min) that was prevented when PAECs were pretreated with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo-[3,4-D]pyrimidine (PP2), a Src inhibitor. ANG II induced a Src-dependent association between Shc and growth factor receptor-bound protein 2 (Grb2) and between Grb2 and son of sevenless (Sos), both of which were maximal at 15 min. The ANG II-dependent increase in Ras GTP binding was prevented when PAECs were pretreated with the AT2 antagonist PD-123319 or with PP2 or were transfected with Src DN cDNA. ANG II-dependent activation of MAPK and the increase in endothelial NOS (eNOS) were prevented when PAECs were transfected with Ras DN cDNA or treated with FTI-277, a farnesyl transferase inhibitor. ANG II induction of Raf-1 phosphorylation was prevented when PAECs were pretreated with PD-123319 and PP2. Raf kinase inhibitor 1 prevented the ANG II-dependent increase in eNOS expression. Collectively, these data suggest that Gi3, Shc, Grb2, Ras, and Raf-1 link Src to activation of MAPK and to the AT2-dependent increase in eNOS expression in PAECs. Src; mitogen-activated protein kinase  相似文献   

3.

Background

Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells.

Methods

Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting.

Results

The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα.

Conclusion

The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.  相似文献   

4.
The Chinese herb Salvia miltiorrhiza (SM) has been found to have beneficial effects on the circulatory system. In the present study, we investigated the effects of cryptotanshinone (derived from SM) on endothelin-1 (ET-1) expression in human umbilical vein endothelial cells (HUVECs). The effect of cryptotanshinone on nitric oxide (NO) in HUVECs was also examined. We found that cryptotanshinone inhibited basal and tumor necrosis factor-alpha (TNF-alpha) stimulated ET-1 secretion in a concentration-dependent manner. Cryptotanshinone also induced a concentration-dependent decrease in ET-1 mRNA expression. Cryptotanshinone increased basal and TNF-alpha-attenuated NO production in a dose-dependent fashion. Cryptotanshinone induced a concentration-dependent increase in endothelial nitric oxide synthase (eNOS) expression without significantly changing neuronal nitric oxide synthase (nNOS) expression in HUVECs in the presence or absence of TNF-alpha. NOS activities in the HUVECs were also induced by cryptotanshinone. Furthermore, decreased ET-1 expression in response to cryptotanshinone was not antagonized by the NOS inhibitor l-NAME. A gel shift assay further showed that TNF-alpha-induced Nuclear Factor-kappaB (NF-kappaB) activity was significantly reduced by cryptotanshinone. These data suggest that cryptotanshinone inhibits ET-1 production, at least in part, through a mechanism that involves NF-kappaB but not NO production.  相似文献   

5.
Hyperbaric oxygen (HBO) is beingstudied as a therapeutic intervention for ischemia/reperfusion(I/R) injury. We have developed an in vitro endothelial cell model ofI/R injury to study the impact of HBO on the expression ofintercellular adhesion molecule-1 (ICAM-1) and polymorphonuclearleukocyte (PMN) adhesion. Human umbilical vein endothelial cell (HUVEC)and bovine aortic endothelial cell (BAEC) induction of ICAM-1 requiredsimultaneous exposure to both hypoxia and hypoglycemia as determined byconfocal laser scanning microscopy, ELISA, and Western blot. HBOtreatment reduced the expression of ICAM-1 to control levels. Adhesionof PMNs to BAECs was increased following hypoxia/hypoglycemia exposure(3.4-fold, P < 0.01) and was reduced to control levels withexposure to HBO (P = 0.67). Exposure of HUVECs and BAECs to HBOinduced the synthesis of endothelial cell nitric oxide synthase (eNOS).The NOS inhibitor nitro-L-arginine methyl ester attenuatedHBO-mediated inhibition of ICAM-1 expression. Our findings suggest thatthe beneficial effects of HBO in treating I/R injury may be mediated inpart by inhibition of ICAM-1 expression through the induction of eNOS.

  相似文献   

6.
The cardiovascular effects of hemoglobin-based oxygen carriers (HBOCs) are mainly related to their nitric oxide (NO) scavenging properties but other effects such as the impact of these hemoglobins on the endothelial cell (EC) biology are not well understood. We hypothesized that HBOCs could modify EC functions by altering gene expression, in particular the endothelial NO synthase (NOS3) and/or by activating EC. Cultured human aortic endothelial cells (HAEC) were incubated for 3 hours with purified cell-free Hb, Dex-BTC-Hb or alpha alpha-Hb (16 g/L). Expression of NOS3 mRNA and protein were assessed by semi-quantitative RT-PCR and Western blot respectively immediately after and 24 hours after incubation. The expression and localization of the adhesion molecule ICAM-1 were detected by fluorescence microscopy. None of the solutions tested modified NOS3 mRNA and protein expression despite adequate controls that up- or down-regulate NOS3 expression. The expression and the localization of ICAM-1 on the cell membrane were modified after 3 hours of incubation with all the hemoglobin solutions tested in a manner similar to tumor necrosis factor-alpha. In conclusion, HAEC incubation with clinically relevant concentrations of HBOCs induced changes in the pattern of ICAM-1 expression consistent with cell activation/cell signaling mechanisms. However, HBOCs did not alter NOS3 gene expression.  相似文献   

7.
N(alpha)-vanillyl-N(omega)-nitroarginine (N - 1) that combines the active functions of natural antioxidant and nitric oxide synthase inhibitor was developed for its neuroprotective properties. N - 1 exhibited protective effects against hydrogen peroxide-induced cell damage and the inhibitory effect on nitric oxide 'NO' production induced by calcium ionophore in NG 108-15 cells. N - 1 inhibited the constitutive NOS isolated from rat cerebellar in a greater extent than constitutive NOS from human endothelial cells. Low binding energy (-10.2 kcal/mol) obtained from docking N - 1 to nNOS supported the additional mode of action of N - 1 as an nNOS inhibitor. The in vivo neuroprotective effect on kainic acid-induced nitric oxide production and neuronal cell death in rat brain was investigated via microdialysis. Rats were injected intra-peritonially with N - 1 at 75 micromol/kg before kainic acid injection (10 mg/kg). The significant suppression effect on kainic acid-induced NO and significant increase in surviving cells were observed in the hippocampus at 40 min after the induction.  相似文献   

8.
Laminar shear stress (LSS) is known to increase endothelial nitric oxide (NO) production, which is essential for vascular health, through expression and activation of nitric oxide synthase 3 (NOS3). Recent studies demonstrated that LSS also increases the expression of argininosuccinate synthetase 1 (ASS1) that regulates the provision of L-arginine, the substrate of NOS3. It was thus hypothesized that ASS1 might contribute to vascular health by enhancing NO production in response to LSS. This hypothesis was pursued in the present study by modulating NOS3 and ASS1 levels in cultured endothelial cells. Exogenous expression of either NOS3 or ASS1 in human umbilical vein endothelial cells increased NO production and decreased monocyte adhesion stimulated by tumor necrosis factor-α (TNF-α). The latter effect of overexpressed ASS1 was reduced when human umbilical vein endothelial cells were co-treated with small interfering RNAs (siRNAs) for ASS1 or NOS3. SiRNAs of NOS3 and ASS1 attenuated the increase of NO production in human aortic endothelial cells stimulated by LSS (12 dynes·cm(-2)) for 24 h. LSS inhibited monocyte adhesion to human aortic endothelial cells stimulated by TNF-α, but this effect of LSS was abrogated by siRNAs of NOS3 and ASS1 that recovered the expression of vascular cell adhesion molecule-1. The current study suggests that the expression of ASS1 harmonized with that of NOS3 may be important for the optimized endothelial NO production and the prevention of the inflammatory monocyte adhesion to endothelial cells.  相似文献   

9.
《Life sciences》1996,60(3):PL53-PL56
The effects of elevated glucose and aldose reductase inhibitor (ARI:ONO-2235) on nitric oxide (NO) production in cultured human umbilical endothelial cells (HUVEC) were evaluated. Aldose reductase and nitric oxide synthase(NOS) share NADPH as an obligate cofactor, therefore it is suggested that the enhanced of glucose flux (27.5 mM) by aldose reductase inhibited NO production by blunting NOS activity. However, the addition of ONO-2235 (100 μM) prevented the inhibition of [NO2] production. Since ARI decreases glucose-mediated inhibition of NO production in HUVEC, this agent might ameliorate endothelial function associated with diabetes.  相似文献   

10.
In the present study, we addressed the role of intercellular adhesion molecule type 1 (ICAM-1/CD54) in neutrophil migration to inflammatory site and whether the inhibitory effect of nitric oxide (NO) upon the neutrophil rolling, adhesion and migration involves down-modulation of ICAM-1 expression through a cyclic GMP (cGMP) dependent mechanism. It was observed that neutrophil migration induced by intraperitoneal administration of endotoxin (LPS), carrageenan (Cg) or N-formyl peptide (fMLP) in ICAM-1 deficient (ICAM-1-/-) is similar to that observed in wild type (WT) mice. The treatment of mice with NO synthase (NOS) inhibitors, NG-nitro-l-arginine, aminoguanidine or with a soluble guanylate cyclase (sGC) inhibitor, ODQ enhanced LPS- or Cg-induced neutrophil migration, rolling and adhesion on venular endothelium. These parameters induced by LPS were also enhanced by 1400 W, a specific iNOS inhibitor, treatment. On the other hand, the treatment of the mice with S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, reduced these parameters induced by LPS or Cg by a mechanism sensitive to ODQ pretreatment. The NOS inhibitors did not enhance LPS-, Cg- or fMLP-induced migration and adhesion in ICAM-1-/- mice. Moreover, genetic (iNOS-/- mice) or pharmacological inhibition of NOS or of sGC enhanced LPS-induced ICAM-1 expression on mesenteric microcirculation vessels of WT mice. By contrast, SNAP reduced the ICAM-1 expression by a mechanism dependent on cGMP. In conclusion, the results suggest that although during inflammation, ICAM-1 does not contribute to neutrophil migration, it is necessary for the down-modulatory effect of inflammation-released NO on the adhesion and transmigration of neutrophils. Moreover, these NO effects are mediated via cGMP.  相似文献   

11.
12.
Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.  相似文献   

13.
The mechanism by which vascular endothelial growth factor (VEGF) regulates endothelial nitric-oxide synthase (eNOS) expression is presently unclear. Here we report that VEGF treatment of bovine adrenal cortex endothelial cells resulted in a 5-fold increase in both eNOS protein and activity. Endothelial NOS expression was maximal following 2 days of constant VEGF exposure (500 pM) and declined to base-line levels by day 5. The elevated eNOS protein level was sustained over the time course if VEGF was co-incubated with L-N(G)-nitroarginine methyl ester, a competitive eNOS inhibitor. Addition of S-nitroso-N-acetylpenicillamine, a nitric oxide donor, prevented VEGF-induced eNOS up-regulation. These data suggest that nitric oxide participates in a negative feedback mechanism regulating eNOS expression. Various approaches were used to investigate the role of the two high affinity VEGF receptors in eNOS up-regulation. A KDR receptor-selective mutant increased eNOS expression, whereas an Flt-1 receptor-selective mutant did not. Furthermore, VEGF treatment increased eNOS expression in a KDR but not in an Flt-1 receptor-transfected porcine aorta endothelial cell line. SU1498, a selective inhibitor of the KDR receptor tyrosine kinase, blocked eNOS up-regulation, thus providing further evidence that the KDR receptor signals for eNOS up-regulation. Finally, treatment of adrenal cortex endothelial cells with VEGF or phorbol ester resulted in protein kinase C activation and elevated eNOS expression, whereas inhibition of protein kinase C with isoform-specific inhibitors abolished VEGF-induced eNOS up-regulation. Taken together, these data demonstrate that VEGF increases eNOS expression via activation of the KDR receptor tyrosine kinase and a downstream protein kinase C signaling pathway.  相似文献   

14.
一氧化氮抑制AngⅡ介导的心肌肥大反应的信号机制   总被引:12,自引:0,他引:12  
Liu PQ  Lu W  Pan JY 《生理学报》2002,54(3):213-218
本文主要利用培养的新生大鼠心肌细胞,从细胞学及分子生物学角度研究一氧化氮(NO)信号系统在AngⅡ介导的心肌肥大反应中的作用及机制。实验以心肌细胞蛋白合成速率、心房钠尿肽(ANP)的表达作为心肌肥大反应的指标,以硝酸盐及亚硝酸盐含量反映心肌细胞NO水平,以免疫印迹法测定MKP-1蛋白表达,以RT-PCR测定eNOS mRNA水平。结果发现:(1)L-精氨酸(L-Arg)10,100μmol/L分别增加心肌细胞NO水平16%及31%,L-Arg(100μmol/L)还可增加心肌细胞eNOS mRNA表达,其作用可被NOS抑制剂L-NAME所抑制;(2)L-Arg(100μmol/L)可降低AngⅡ(0.1μmol/L)诱导的心肌细胞ANP mRNA表达水平和蛋白合成速率,而在L-Arg处理之前用针对MKP-1的反义寡核苷酸转染心肌细胞,蛋白合成速率明显增加,可取消L-Arg的抑制作用,甚至超过AngⅡ组;(3)L-Arg(100μmol/L)明显增加MKP-1蛋白表达,比对照组增加225%,NOS抑制剂L-NAME及蛋白激酶G(PKG)抑制剂KT-5823皆可抑制L-Arg诱导的MKP-1蛋白表达,分别抑制88%、83%,而AngⅡ能增加L-Arg诱导的MKP-1的表达,较对照组增加365%,增强了L-Arg的作用。以上结果表明,NO抑制AngⅡ介导心肌肥大反应的机制可能是通过激活PKG,促进MKP-1的表达,从而增加MAPK去磷酸化实现的。  相似文献   

15.
16.
The protein inhibitor of nitric oxide synthase (PIN) was independently identified as an inhibitor of nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS), and as a member of the cellular dynein light chain family, dynein light chain 8 (LC8), responsible for intracellular protein trafficking. Mast cells (MC) are involved in several homeostatic and pathological processes and can be regulated by NO. This study describes the expression of PIN/LC8 in the human MC line HMC-1. We also studied if PIN/LC8 binds nNOS, and what role this might have in leukotriene (LT) production. We found that PIN/LC8 mRNA and protein was expressed in HMC-1. Using a GST-PIN construct, we showed PIN binds to nNOS, but not endothelial (e)NOS in HMC-1; in our studies HMC-1 did not express inducible (i)NOS. Intracellular delivery of anti-PIN/LC8 antibody enhanced ionophore (A23187)-induced LT production through an unknown mechanism. Thus we established for the first time expression of PIN/LC8 in human MC, its ability to bind nNOS, and the effect that blocking it has on LT production in a human MC lines.  相似文献   

17.
Hrabák A  Szabó A  Bajor T  Körner A 《Life sciences》2006,78(12):1362-1370
The relationship between diabetes mellitus Type 1 and nitric oxide (NO) synthesis was studied in multiple low-dose streptozotocin (STZ)-treated rats and diabetic children. The aim of our experimental work was to test the effect of hyperglycemic state on the level of urinary stable NO end products and on the expression of inducible nitric oxide synthase (NOS II) in white blood cells (WBC). It was also studied whether the measurements of these parameters were suitable to predict the presence of early diabetes before its onset. The occurrence of insulitis in streptozotocin-treated rats could not be clearly demonstrated. Urinary nitrite plus nitrate level significantly increased both in diabetic rats and in children compared to controls. However, the increase of the activity and the expression of inducible NOS II were only observed in rat white blood cells and this effect was prevented by insulin treatment. In human samples, less than 25% of children showed elevated NOS II expression in white blood cells without any correlation to the level of urinary NO end products and glycated hemoglobin in blood. Correlation was found only between the activity and expression of NOS II in white blood cells of patients whose white blood cells were positive for the presence of NOS II. Measurement of urinary nitrite plus nitrate content as well as the determination of NOS II expression of white blood cells in an early phase of diabetes are not suitable predictors in humans probably due to the basic differences in the mechanism of streptozotocin-induced rat and spontaneous human Type 1 diabetes.  相似文献   

18.
Chunghyuldan (CHD), a combinatorial drug that has antihyperlipidemic and anti-inflammatory activities, has been shown to improve arterial stiffness and inhibit stroke recurrence in clinical study. To understand the molecular basis of CHD's clinical effects, we explored its effect on cell proliferation and expression of nitric oxide synthase (NOS) and vascular cell adhesion molecule (VCAM-1) in human umbilical vein endothelial cells (HUVECs). Cell number counting and [3H]thymidine incorporation assay demonstrated that nontoxic doses of CHD have an inhibitory effect on DNA synthesis and suppress cell cycle progression of HUVECs. CHD treatment led to a marked induction of NO production through up-regulation of NOS mRNA expression in a dose- and time-dependent manner, whereas it suppressed VCAM-1 expression. CHD inhibition of VCAM-1 expression was totally blocked by pretreatment with the NO synthesis inhibitor L-NMMA, whereas pretreatment with the NO donor DETA-NO further decreased VCAM-1 level in CHD-treated HUVECs, indicating that VCAM-1 regulation by CHD is mediated through increased NO synthesis by CHD. In addition, TNF-alpha-mediated VCAM-1 activation was substantially impeded by CHD treatment. Collectively, our data suggest that anti-inflammatory or anti-hyperlipidemic effects of CHD might be associated with its ability to activate NO production and suppress VCAM-1 expression in human endothelial cells.  相似文献   

19.
Atherosclerosis is a chronic inflammatory disease arising due to an imbalance in lipid metabolism and maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Interactions between monocytes/macrophages and endothelial cells play an essential role in the pathogenesis of atherosclerosis. In our current study, nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) has been identified as a regulator of macrophage and endothelial cell interaction. Oxidized LDL (OxLDL) activates NOS1, which results in the expression of CD40 ligand in macrophages. OxLDL-stimulated macrophages produce some soluble factors which increase the CD40 receptor expression in endothelial cells. This increases the interaction between the macrophages and endothelial cells, which leads to an increase in the inflammatory response. Inhibition of NOS1-derived NO might serve as an effective strategy to reduce foam cell formation and limit the extent of atherosclerotic plaque expansion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号