首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rhodanese is an ubiquitous enzyme that in vitro catalyses the transfer of a sulfur atom from suitable donors to nucleophilic acceptors by way of a double displacement mechanism. During the catalytic process the enzyme cycles between a sulfur-free and a persulfide-containing form, via formation of a persulfide linkage to a catalytic Cys residue. In the nitrogen-fixing bacteria Azotobacter vinelandii the rhdA gene has been identified and the encoded protein functionally characterized as a rhodanese. The crystal structure of the A. vinelandii rhodanese has been determined and refined at 1.8 A resolution in the sulfur-free and persulfide-containing forms. Conservation of the overall three-dimensional fold of bovine rhodanese is observed, with substantial modifications of the protein structure in the proximity of the catalytic residue Cys230. Remarkably, the native enzyme is found as the Cys230-persulfide form; in the sulfur-free state the catalytic Cys residue adopts two alternate conformations, reflected by perturbation of the neighboring active-site residues, which is associated with a partly reversible loss of thiosulfate:cyanide sulfurtransferase activity. The catalytic mechanism of A. vinelandii rhodanese relies primarily on the main-chain conformation of the 230 to 235 active-site loop and on a surrounding strong positive electrostatic field. Substrate recognition is based on residues which are entirely different in the prokaryotic and eukaryotic enzymes. The active-site loop of A. vinelandii rhodanese displays striking structural similarity to the active-site loop of the similarly folded catalytic domain of dual specific phosphatase Cdc25, suggesting a common evolutionary origin of the two enzyme families.  相似文献   

2.
Recent investigations have shown that the rhodanese domains, ubiquitous structural modules which might represent an example of conserved structures with possible functional diversity, are structurally related to the catalytic subunit of Cdc25 phosphatase enzymes. The major difference characterizing the active-site of the Azotobacter vinelandii rhodanese RhdA, with respect to the closely related Cdc25s (A, B, C), is that in Cdc25 phosphatases the active site loop [His-Cys-(X)5-Arg] is one residue longer than in RhdA [His-Cys-(X)4-Arg]. According to the hypothesis that the length of the RhdA active-site loop should play a key role in substrate recognition and catalytic activity, RhdA scaffold was the starting point for producing mutants with single-residue insertion to generate the catalytic loop HCQTHAHR (in RhdA-Ala) and HCQTHSHR (in RhdA-Ser). Analyses of the catalytic performances of the engineered RhdAs revealed that elongation of the catalytic loop definitely compromised the ability to catalyze sulfur transfer reactions, while it generated 'phosphatase' enzymes able to interact productively with the artificial substrate 3-O-methylfluorescein phosphate. Although this study is restricted to an example of rhodanese modules (RhdA), it provided experimental evidence of the hypothesis that a specific mutational event (a single-residue insertion or deletion in the active-site loop) could change the selectivity from sulfur- to phosphate-containing substrates (or vice versa).  相似文献   

3.
Pagani S  Forlani F  Carpen A  Bordo D  Colnaghi R 《FEBS letters》2000,472(2-3):307-311
Azotobacter vinelandii RhdA uses thiosulfate as the only sulfur donor in vitro, and this apparent selectivity seems to be a unique property among the characterized sulfurtransferases. To investigate the basis of substrate recognition in RhdA, we replaced Thr-232 with either Ala or Lys. Thr-232 was the target of this study since the corresponding Lys-249 in bovine rhodanese has been identified as necessary for catalytic sulfur transfer, and replacement of Lys-249 with Ala fully inactivates bovine rhodanese. Both T232K and T232A mutants of RhdA showed significant increase in thiosulfate-cyanide sulfurtransferase activity, and no detectable activity in the presence of 3-mercaptopyruvate as the sulfur donor substrate. Fluorescence measurements showed that wild-type and mutant RhdAs were overexpressed in the persulfurated form, thus conferring to this enzyme the potential of a persulfide sulfur donor compound. RhdA contains a unique sequence stretch around the catalytic cysteine, and the data here presented suggest a possible divergent physiological function of A. vinelandii sulfurtransferase.  相似文献   

4.
Pseudomonas aeruginosa, the rRNA group I type species of genus Pseudomonas, is a Gram-negative, aerobic bacterium responsible for serious infection in humans. P. aeruginosa pathogenicity has been associated with the production of several virulence factors, including cyanide. Here, the biochemical characterization of recombinant P. aeruginosa rhodanese (Pa RhdA), catalyzing the sulfur transfer from thiosulfate to a thiophilic acceptor, e.g., cyanide, is reported. Sequence homology analysis of Pa RhdA predicts the sulfur-transfer reaction to occur through persulfuration of the conserved catalytic Cys230 residue. Accordingly, the titration of active Pa RhdA with cyanide indicates the presence of one extra sulfur bound to the Cys230 Sgamma atom per active enzyme molecule. Values of K(m) for thiosulfate binding to Pa RhdA are 1.0 and 7.4mM at pH 7.3 and 8.6, respectively, and 25 degrees C. However, the value of K(m) for cyanide binding to Pa RhdA (=14 mM, at 25 degrees C) and the value of V(max) (=750 micromol min(-1)mg(-1), at 25 degrees C) for the Pa RhdA-catalyzed sulfur-transfer reaction are essentially pH- and substrate-independent. Therefore, the thiosulfate-dependent Pa RhdA persulfuration is favored at pH 7.3 (i.e., the cytosolic pH of the bacterial cell) rather than pH 8.6 (i.e., the standard pH for rhodanese activity assay). Within this pH range, conformational change(s) occur at the Pa RhdA active site during the catalytic cycle. As a whole, rhodanese may participate in multiple detoxification mechanisms protecting P. aeruginosa from endogenous and environmental cyanide.  相似文献   

5.
Cdc25B is a dual specificity phosphatase involved in the control of cyclin-dependent kinases and the progression of cells through the cell cycle. A series of minimal domain Cdc25B constructs maintaining catalytic activity have been expressed. The structure of a minimum domain construct binding sulfate was determined at 1.9 A resolution and a temperature of 100 K. Other forms of the same co?nstruct were determined at lower resolution and room temperature. The overall folding and structure of the domain is similar to that found for Cdc25A. An important difference between the two is that the Cdc25B domain binds oxyanions in the catalytic site while that of Cdc25A appears unable to bind oxyanions. There are also important conformational differences in the C-terminal region. In Cdc25B, both sulfate and tungstate anions are shown to bind in the catalytic site containing the signature motif (HCxxxxxR) in a conformation similar to that of other protein tyrosine phosphatases and dual specificity phosphatases, with the exception of the Cdc25A. The Cdc25B constructs, with various truncations of the C-terminal residues, are shown to have potent catalytic activity. When cut back to the site at which the Cdc25A structure begins to deviate from the Cdc25B structure, the activity is considerably less. There is a pocket extending from the catalytic site to an anion-binding site containing a chloride about 14 A away. The catalytic cysteine residue, Cys473, can be oxidized to form a disulfide linkage to Cys426. A readily modifiable cysteine residue, Cys484, resides in another pocket that binds a sulfate but not in the signature motif conformation. This region of the structure is highly conserved between the Cdc25 molecules and could serve some unknown function.  相似文献   

6.
IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesis in vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s(2)C and ms(2)i(6)A) yet showed wild type levels of Fe-S-independent thionucleosides (s(4)U and mnm(5)s(2)U) that require persulfide formation and transfer. In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesis in vivo without detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.  相似文献   

7.
X-ray studies at 2.5 Å resolution show that the active site of bovine liver rhodanese is a depression between the two domains. In sulfur-substituted rhodanese the density of the essential Cys247 corresponds with that of a persulfide. Both sulfur atoms are interacting via hydrogen bonds with several peptide NH and side-chain OH groups. One side of the active site pocket contains mainly hydrophylic, the other side mainly hydrophobic residues. None of these hydrophylic or hydrophobic groups appears to interact strongly with the persulfide.Crystals of the sulfur-substituted enzyme were treated with cyanide, a sulfur acceptor. Subsequent difference Fourier studies show that the extra sulfur atom has been removed. Only minor conformational differences appear to exist between the two rhodanese species studied. These are a movement of the Sγ atom of Cys247 and some rearrangement of solvent molecules near the active site.The combination of these observations with the results of experiments performed by other investigators suggest a mechanism for sulfur transfer by rhodanese in which the thiol group of Cys247 is the essential nucleophile, whereas the positive charges on Arg186 and Lys249 act in various ways as “electrophilic assistants”. The transition state and the persulfide in the sulfur-substituted enzyme are stabilized by several hydrogen bonds.  相似文献   

8.
3-Mercaptopyruvate sulfurtransferases (MSTs) catalyze, in vitro, the transfer of a sulfur atom from substrate to cyanide, yielding pyruvate and thiocyanate as products. They display clear structural homology with the protein fold observed in the rhodanese sulfurtransferase family, composed of two structurally related domains. The role of MSTs in vivo, as well as their detailed molecular mechanisms of action have been little investigated. Here, we report the crystal structure of SseA, a MST from Escherichia coli, which is the first MST three-dimensional structure disclosed to date. SseA displays specific structural differences relative to eukaryotic and prokaryotic rhodaneses. In particular, conformational variation of the rhodanese active site loop, hosting the family invariant catalytic Cys residue, may support a new sulfur transfer mechanism involving Cys237 as the nucleophilic species and His66, Arg102 and Asp262 as residues assisting catalysis.  相似文献   

9.
BACKGROUND: Rhodanese domains are structural modules occurring in the three major evolutionary phyla. They are found as single-domain proteins, as tandemly repeated modules in which the C-terminal domain only bears the properly structured active site, or as members of multidomain proteins. Although in vitro assays show sulfurtransferase or phosphatase activity associated with rhodanese or rhodanese-like domains, specific biological roles for most members of this homology superfamily have not been established. RESULTS: Eight ORFs coding for proteins consisting of (or containing) a rhodanese domain bearing the potentially catalytic Cys have been identified in the Escherichia coli K-12 genome. One of these codes for the 12-kDa protein GlpE, a member of the sn-glycerol 3-phosphate (glp) regulon. The crystal structure of GlpE, reported here at 1.06 A resolution, displays alpha/beta topology based on five beta strands and five alpha helices. The GlpE catalytic Cys residue is persulfurated and enclosed in a structurally conserved 5-residue loop in a region of positive electrostatic field. CONCLUSIONS: Relative to the two-domain rhodanese enzymes of known three-dimensional structure, GlpE displays substantial shortening of loops connecting alpha helices and beta sheets, resulting in radical conformational changes surrounding the active site. As a consequence, GlpE is structurally more similar to Cdc25 phosphatases than to bovine or Azotobacter vinelandii rhodaneses. Sequence searches through completed genomes indicate that GlpE can be considered to be the prototype structure for the ubiquitous single-domain rhodanese module.  相似文献   

10.
ThiI is an enzyme common to the biosynthetic pathways leading to both thiamin and 4-thiouridine in tRNA. Comparison of the ThiI sequence with protein sequences in the data bases revealed that the Escherichia coli enzyme contains a C-terminal extension displaying sequence similarity to the sulfurtransferase rhodanese. Cys-456 of ThiI aligns with the active site cysteine residue of rhodanese that transiently forms a persulfide during catalysis. We investigated the functional importance of this sequence similarity and discovered that, like rhodanese, ThiI catalyzes the transfer of sulfur from thiosulfate to cyanide. Mutation of Cys-456 to alanine impairs this sulfurtransferase activity, and the C456A ThiI is incapable of supporting generation of 4-thiouridine in tRNA both in vitro and in vivo. We therefore conclude that Cys-456 of ThiI is critical for activity and propose that Cys-456 transiently forms a persulfide during catalysis. To accommodate this hypothesis, we propose a general mechanism for sulfur transfer in which the terminal sulfur of the persulfide first acts as a nucleophile and is then transferred as an equivalent of S(2-) rather than S(0).  相似文献   

11.
The arsenate/antimonate reductase LmACR2 has been recently identified in the genome of Leishmania major. Besides displaying phosphatase activity in vitro, this enzyme is able to reduce both As(V) and Sb(V) to their respective trivalent forms and is involved in the activation of Pentostan, a drug containing Sb(V) used in the treatment of leishmaniasis. LmACR2 displays sequence and functional similarity with the arsenate reductase ScACR2 from Saccharomyces cerevisiae, and both proteins are homologous to the catalytic domain of Cdc25 phosphatases, which, in turn, belong to the rhodanese/Cdc25 phosphatase superfamily. In this work, the three-dimensional structure of LmACR2 has been determined with crystallographic methods and refined at 2.15 Å resolution. The protein structure maintains the overall rhodanese fold, but substantial modifications are observed in secondary structure position and length. However, the conformation of the active-site loop and the position of the catalytic residue Cys75 are unchanged with respect to the Cdc25 phosphatases. From an evolutionary viewpoint, LmACR2 and the related arsenate reductases form, together with the known Cdc25 phosphatases, a well-defined subfamily of the rhodanese/Cdc25 phosphatase superfamily, characterized by a 7-amino-acid-long active-site loop that is able to selectively bind substrates containing phosphorous, arsenic, or antinomy. The evolutionary tree obtained for these proteins shows that, besides the active-site motif CE[F/Y]SXXR that characterizes Cdc25 phosphatase, the novel CALSQ[Q/V]R motif is also conserved in sequences from fungi and plants. Similar to Cdc25 phosphatase, these proteins are likely involved in cell cycle control. The active-site composition of LmACR2 (CAQSLVR) does not belong to either group, but gives to the enzyme a bifunctional activity of both phosphatase and As/Sb reductase. The subtle dependence of substrate specificity on the amino acid composition of the active-site loop displays the versatility of the ubiquitous rhodanese domain.  相似文献   

12.
Rhodanese is a sulfurtransferase which in vitro catalyzes the transfer of a sulfane sulfur from thiosulfate to cyanide. Ionic interactions of the prokaryotic rhodanese-like protein from Azotobacter vinelandii were studied by fluorescence and NMR spectroscopy. The catalytic Cys230 residue of the enzyme was selectively labelled using [15N]Cys, and changes in 1H and 15N NMR resonances on addition of different ions were monitored. The results clearly indicate that the sulfur transfer is due to a specific reaction of the persulfurated Cys residue with a sulfur acceptor such as cyanide and not to the presence of the anions. Moreover, the 1H-NMR spectrum of a defined spectral region is indicative of the status of the enzyme and can be used to directly monitor sulfur loading even at low concentrations. Selenium loading by the addition of selenodiglutathione was monitored by fluorescence and NMR spectroscopy. It was found to involve a specific interaction between the selenodiglutathione and the catalytic cysteine residue of the enzyme. These results indicate that rhodanese-like proteins may function in the delivery of reactive selenium in vivo.  相似文献   

13.
Cysteine desulfurase plays a principal role in the assembly of iron-sulfur clusters by mobilizing the sulfur atom of L-cysteine. The active site cysteine residue of the enzyme attacks the sulfur atom of L-cysteine to form a cysteine persulfide residue, and the substrate-derived sulfur atom of this residue is incorporated into iron-sulfur clusters. Escherichia coli has three cysteine desulfurases named IscS, CsdB and CSD. We found that each of them facilitates the formation of the iron-sulfur cluster of ferredoxin in vitro. Since IscU, an iron-sulfur protein of E. coli, is believed to function as a scaffold for the cluster assembly in vivo, we examined whether IscS, CsdB and CSD interact with IscU to deliver the sulfur atom to IscU. By surface plasmon resonance analysis, we found that only IscS interacts with IscU. We isolated the IscS/IscU complex, determined the residues involved in the formation of the complex, and obtained data suggesting that the sulfur transfer from IscS to IscU is initiated by the attack of Cys63 of IscU on the S gamma atom of the cysteine persulfide residue transiently produced on IscS.  相似文献   

14.
Biotin synthase (BioB) is an iron-sulfur dimeric enzyme which catalyzes the last step in biotin synthesis. The reaction consists of the introduction of a sulfur atom into dethiobiotin. It is shown here that BioB displays a significant cysteine desulfurase activity, providing it with the ability to mobilize sulfur from free cysteine. This activity is dependent on pyridoxal 5'-phosphate (PLP) and dithiothreitol and proceeds through a protein-bound persulfide. Like other cysteine desulfurases, BioB binds 1 equiv of PLP. By site-directed mutagenesis, two conserved cysteines, Cys97 and Cys128, are shown to be critical for cysteine desulfuration and are good candidates as the site for a persulfide. Since biotin synthase activity is greatly increased by PLP and cysteine, even though it does not exceed 1 nmol of biotin/nmol of monomer, it is proposed that cysteine desulfuration is intimately linked to biotin synthesis. New scenarios for sulfur insertion into dethiobiotin, in which cysteine persulfides play a key role, are discussed.  相似文献   

15.
Bordo D  Bork P 《EMBO reports》2002,3(8):741-746
Rhodanese domains are ubiquitous structural modules occurring in the three major evolutionary phyla. They are found as tandem repeats, with the C-terminal domain hosting the properly structured active-site Cys residue, as single domain proteins or in combination with distinct protein domains. An increasing number of reports indicate that rhodanese modules are versatile sulfur carriers that have adapted their function to fulfill the need for reactive sulfane sulfur in distinct metabolic and regulatory pathways. Recent investigations have shown that rhodanese domains are also structurally related to the catalytic subunit of Cdc25 phosphatase enzymes and that the two enzyme families are likely to share a common evolutionary origin. In this review, the rhodanese/Cdc25 phosphatase superfamily is analyzed. Although the identification of their biological substrates has thus far proven elusive, the emerging picture points to a role for the amino-acid composition of the active-site loop in substrate recognition/specificity. Furthermore, the frequently observed association of catalytically inactive rhodanese modules with other protein domains suggests a distinct regulatory role for these inactive domains, possibly in connection with signaling.  相似文献   

16.
Rudolph J 《Biochemistry》2002,41(49):14613-14623
Cdc25 is a dual-specificity phosphatase that catalyzes the activation of the cyclin-dependent kinases, thus causing initiation and progression of successive phases of the cell cycle. Although it is not significantly homologous in sequence or structure to other dual-specificity phosphatases, Cdc25 belongs to the class of well-studied cysteine phosphatases as it contains their active site signature motif. Like other dual-specificity phosphatases, Cdc25 contains an active site cysteine whose pK(a) of 5.9 can be measured in pH-dependent kinetics using both small molecule and protein substrates such as Cdk2-pTpY/CycA. We have previously shown that the catalytic acid expected in phosphatases of this family and apparent in kinetics with the natural protein substrate does not appear to lie within the known structure of Cdc25 [Chen, W., et al. (2000) Biochemistry 39, 10781]. Here we provide experimental evidence for a novel mechanism wherein Cdc25 uses as its substrate a monoprotonated phosphate in contrast to the more typical bisanionic phosphate. Our pH-dependent studies, including one-turnover kinetics, solvent kinetic isotope effects, equilibrium perturbation, substrate depletion, and viscosity measurements, show that the monoprotonated phosphate of the protein substrate Cdk2-pTpY/CycA provides the critical proton to the leaving group. Additionally, we provide evidence that Glu474 on the Cdc25 enzyme serves an important role as a base in the transfer of the proton from the phosphate to the leaving group. Because of its greater intrinsic reactivity, the use of a monoprotonated phosphate as a phosphatase substrate is a chemically attractive solution and suggests the possibility of designing inhibitors specific for the Cdc25 dual-specificity phosphatase, an important anticancer target.  相似文献   

17.
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.  相似文献   

19.
Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues that may be involved in substrate binding. However, the mechanism of sulfur transfer to form cysteine was not known. Using an in vivo Escherichia coli complementation assay, we showed that all three highly conserved Cys residues in SepCysS (Cys(64), Cys(67), and Cys(272) in the Methanocaldococcus jannaschii enzyme) are essential for the sulfhydrylation reaction in vivo. Biochemical and mass spectrometric analysis demonstrated that Cys(64) and Cys(67) form a disulfide linkage and carry a sulfane sulfur in a portion of the enzyme. These results suggest that a persulfide group (containing a sulfane sulfur) is the proximal sulfur donor for cysteine biosynthesis. The presence of Cys(272) increased the amount of sulfane sulfur in SepCysS by 3-fold, suggesting that this Cys residue facilitates the generation of the persulfide group. Based upon these findings, we propose for SepCysS a sulfur relay mechanism that recruits both disulfide and persulfide intermediates.  相似文献   

20.
The rhdA gene of Azotobacter vinelandii codes for RhdA, a rhodanese-domain protein with an active-site loop structure which has not currently been found in proteins of the rhodanese-homology superfamily. Considering the lack of information on the functional role of the ubiquitous rhodaneses, in the present study we examined the in vivo functions of RhdA by using an A. vinelandii mutant strain (MV474), in which the rhdA gene was disrupted by deletion. Preliminary phenotypic characterization of the rhdA mutant suggested that RhdA could exert protection over Fe-S enzymes, which are easy targets for oxidative damage. To highlight the role of RhdA in preserving sensitive Fe-S clusters, in the present study we analysed the defects of the rhdA-null strain by exploiting growth conditions which resulted in enhancing the catalytic deficiency of enzymes with vulnerable Fe-S clusters. We found that a lack of RhdA impaired A. vinelandii growth in the presence of gluconate, a carbon source that activates the Entner-Doudoroff pathway in which the first enzyme, 6-phosphogluconate dehydratase, employs a 4Fe-4S cluster as an active-site catalyst. By combining proteomics, enzymatic profiles and model systems to generate oxidative stress, evidence is provided that to rescue the effects of a lack of RhdA, A. vinelandii needed to activate defensive activities against oxidative damage. The possible functionality of RhdA as a redox switch which helps A. vinelandii in maintaining the cellular redox balance was investigated by using an in vitro model system that demonstrated reversible chemical modifications in the highly reactive RhdA Cys(230) thiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号