首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin-like growth factor-I (IGF-I) is emerging as an important growth factor able to modulate the programmed cell death (PCD) pathway mediated by the cysteine-dependent aspartate proteases (caspases); however, little is known about the effect of IGF-I after nerve growth factor (NGF) withdrawal in neurons. To begin to understand the neuronal death-sparing effect of IGF-I under NGF-free conditions, we tested whether embryonic sensory dorsal root ganglion neurons (DRG) were able to survive in defined serum-free medium in the presence of IGF-I. We further studied the role of IGF-I signaling and caspase inhibition after NGF withdrawal. NGF withdrawal produced histological changes of apoptosis including chromatin condensation, shrinkage of the perikaryon and nucleus, retention of the plasma membrane, and deletion of single cells. Both IGF-I and Boc-aspartyl (OMe)-fluoromethylketone (BAF), a caspase inhibitor, equally reduced apoptosis after NGF withdrawal. The antiapoptotic effect of IGF-I was completely blocked by LY294002, an inhibitor of PI 3-kinase signaling, but not by the mitogen-activated protein (MAP) kinase/extracellular signal-regulated protein kinase (ERK) activated protein kinase inhibitor PD98059. Functional IGF-I receptors were extensively expressed both in rat and human DRG neurons, although they were most abundant in the neuronal growth cone. Collectively, these findings indicate that IGF-I, signaling though the PI-3 kinase pathway, is important in modulating PCD in cultured DRG neurons after NGF withdrawal, and IGF-I may be important in DRG embryogenesis. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 455–467, 1998  相似文献   

2.
Diabetic autonomic neuropathy is a major cause of morbidity and mortality. However, its etiology and treatment remain obscure. Using the in vitro rat superior cervical ganglion model of diabetic neuropathy, we studied the neuroprotective effects of IGF-I on neurite growth and neuronal apoptosis in a high-glucose milieu. In the presence of elevated levels of glucose similar to those seen in poorly controlled diabetics (20 mM above control), there is inhibition of neurite growth, reduction in neurite caliber, beading of neurites, and retraction of the neurite growth cone. High glucose also induces apoptosis in ganglion neurons. In contrast, IGF-I prevented both glucose induced apoptosis and changes in neurites, even after 96 hours. The IGF-I receptor was uniformly distributed throughout the developing neurite and growth cone in control and IGF-I treated neurons, but not with high glucose alone. These findings suggest that high glucose inhibits neurite growth and initiates apoptosis in cultured sympathetic primary neurons, and IGF-I ameliorates these changes. Collectively, these observations suggest that many of the features of diabetic autonomic neuropathy can be reproduced in a tissue culture model using defined conditions, and may have important implications in defining the etiology and treatment of diabetic neuropathy.  相似文献   

3.
We previously reported that Schwann cells undergo apoptosis after serum withdrawal. Insulin-like growth factor-I, via phosphatidylinositol-3 kinase, inhibits caspase activation and rescues Schwann cells from serum withdrawal-induced apoptosis. In this study, we examined the role of c-jun N-terminal protein kinase (JNK) in Schwann cell apoptosis induced by serum withdrawal. Activation of both JNK1 and JNK2 was detected 1 h after serum withdrawal with the maximal level detected at 2 h. A dominant negative JNK mutant, JNK (APF), blocked JNK activation induced by serum withdrawal and Schwann cell apoptosis, suggesting JNK activation participates in Schwann cell apoptosis. Serum withdrawal-induced JNK activity was caspase dependent and inhibited by a caspase 3 inhibitor, Ac-DEVD-CHO. Because insulin-like growth factor-I and Bcl-X(L) are both Schwann cell survival factors, we tested their effects on JNK activation during apoptosis. Insulin-like growth factor-I treatment decreased both JNK1 and JNK2 activity induced by serum withdrawal. LY294002, a phosphatidylinositol-3 kinase inhibitor, blocked insulin-like growth factor-I inhibition on JNK activation, suggesting that phosphatidylinositol-3 kinase mediates the effects of insulin-like growth factor-I. Overexpression of Bcl-X(L) also resulted in less Schwann cell death and inhibition of JNK activation after serum withdrawal. Collectively, these results suggest JNK activation is involved in Schwann cell apoptosis induced by serum withdrawal. Insulin-like growth factor-I and Bcl family proteins rescue Schwann cells, at least in part, by inhibition of JNK activity.  相似文献   

4.
The death of hemopoietic cells on withdrawal of CSF occurs by a mechanism known as apoptosis characterized by the early degradation of chromatin into oligonucleosome-length fragments. Insulin-like growth factor I plays a pivotal role in the regulation of somatic cell growth as a mediator of growth hormone action. Animals with low levels of circulating IGF-I are more vulnerable to infections and have diminished immune responses. To analyze the possibility of a regulatory role of IGF-I on hemopoiesis and determine its mechanism of action, we have studied the effect of this growth factor on the survival and proliferation of two IL-3-dependent hemopoietic cell lines and in IL-3-responsive primary cultures of bone marrow-derived mast cells. In IL-3-depleted cultures, IGF-I prevented DNA fragmentation and apoptotic cell death. Insulin at high concentration had a weak protective action and IGF-II was inactive in suppressing apoptosis in these IL-3-dependent hemopoietic cells. Cell proliferation was also stimulated by IGF-I in the absence of other hemopoietic growth factors although it was a weak mitogen when compared with IL-3. These results indicate that circulating or locally produced IGF-I may promote survival of both the steady state hemopoietic precursor population and cytokine-producing cells and could therefore regulate hemopoiesis acting in a concerted manner with other CSF.  相似文献   

5.
Leydig cells located in the interstitial space of the testicular parenchyma produce testosterone which plays a critical role in the maintenance and restoration of spermatogenesis in many species, including horses. For normal spermatogenesis, maintaining Leydig cells is critical to provide an optimal and constant level of testosterone. Recently, an anti-apoptotic effect of IGF-I in testicular cells in rats has been reported, but a similar effect of IGF-I on equine Leydig cells remains to be elucidated. If IGF-I also protects stallion testicular cells from undergoing apoptosis, then IGF-I may have potential as a treatment regime to prevent testicular degeneration. The present study was designed to evaluate the anti-apoptotic effect of IGF-I on cultured equine Leydig cells. Testes were collected from 5 post-pubertal stallions (2-4 years old) during routine castrations. A highly purified preparation of equine Leydig cells was obtained from a discontinuous Percoll gradient. Purity of equine Leydig cells was assessed using histochemical 3β-HSD staining. Equine Leydig cells and selected doses of recombinant human IGF-1 (rhIGF-I; Parlow A.F., National Hormone and Peptide Program, Harbor-UCLA Medical Center) were added to wells of 24 or 96 well culture plates in triplicate and cultured for 24 or 48 h under 95% air:5% CO(2) at 34°C. After 24 or 48 h incubation, apoptotic rate was assessed using a Cell Death Detection ELISA kit. Significantly lower apoptotic rates were observed in equine Leydig cells cultured with 5, 10, or 50ng/ml of rhIGF-I compared with control cells cultured without rhIGF-I for 24h. Exposure to 1, 5, 10 or 50 ng/ml of rhIGF-I significantly decreased apoptotic rate in equine Leydig cells cultured for 48 h. After 48 h incubation, cells were labeled with Annexin V and propodium iodine to determine the populations of healthy, apoptotic, and necrotic cells by counting stained cells using a Nikon Eclipse inverted fluorescence microscope. As a percentage of the total cells counted, significantly lower numbers of apoptotic cells were observed in cells treated with 10 (9%) or 50 ng/ml (10%) of rhIGF-I compared with cells cultured without rhIGF-I (control, 22%). In this study, the results from the two assays indicated that rhIGF-I protected equine Leydig cells from undergoing apoptosis during cell culture for 24h or 48 h. In conclusion, IGF-I may be an important paracrine/autocrine factor in protecting equine Leydig cells from undergoing apoptosis.  相似文献   

6.
Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.  相似文献   

7.
Schwann cells (SCs) are the myelin producing cells of the peripheral nervous system. During development, SCs cease proliferation and differentiate into either a myelin-forming or non-myelin forming mature phenotype. We are interested in the role of insulin-like growth factor-I (IGF-I) in SC development. We have shown previously SCs proliferate in response to IGF-I in vitro. In the current study, we investigated the role of IGF-I in SC differentiation. SC differentiation was determined by morphological criteria and expression of myelin proteins. Addition of 1 mM 8-bromo cyclic AMP (cAMP) or growth on Matrigel matrix decreased proliferation and induced differentiation of SCs. IGF-I enhanced both cAMP and Matrigel matrix-induced SC differentiation, as assessed by both morphological criteria and myelin gene expression. Cultured SCs also express IGF binding protein-5 (IGFBP-5), which can modulate the actions of IGF-I. We examined the expression of IGFBP-5 during SC differentiation. Both cAMP and Matrigel matrix treatment enhanced IGFBP-5 protein expression and cAMP increased IGFBP-5 gene expression five fold. These findings suggest IGF-I potentiates SC differentiation. The concomitant up-regulation of IGFBP-5 may play a role in targeting IGF-I to SCs and thus increase local IGF-I bioavailability. J. Cell. Physiol. 171:161–167, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Neuroblastoma, a pediatric peripheral nervous system tumor, frequently contains alterations in apoptotic pathways, producing chemoresistant disease. Insulin-like growth factor (IGF) system components are highly expressed in neuroblastoma, further protecting these cells from apoptosis. This study investigates IGF-I regulation of apoptosis at the mitochondrial level. Elevated extracellular glucose causes rapid mitochondrial enlargement coupled with an increase in the mitochondrial membrane potential (Delta Psi(M)) followed by mitochondrial membrane depolarization (MMD), uncoupling protein 3 (UCP3) downregulation, caspase-3 activation and decreased Bcl-2. MMD inhibition by Bongkrekic acid prevents high-glucose-induced loss of UCP3 and apoptosis. Glucose exposure induces caspase-9 cleavage within 30 min, and caspase-9 inhibition prevents glucose-mediated apoptosis. IGF-I prevents caspase activation and mitochondrial events leading to apoptosis. These results suggest that elevated glucose produces early initiator caspase activation, followed by Delta Psi(M) changes, in neuroblastoma cells; in turn, IGF-I prevents apoptosis by preventing downstream caspase activation, maintaining Delta Psi(M) and regulating Bcl proteins.  相似文献   

9.
10.
Insulin-like growth factor-I (IGF-I) is known as a potent mitogen for a variety of cell types, including colon cancer cell lines. The objective of this study was to determine the effect of IGF-I on cell death induced by cytotoxic agents actinomycin D (Act-D), lovastatin (LOV), and doxorubicin (DOX) in the MCLM mouse colon cancer cell line, and the mechanisms involved. Subconfluent monolayer MCLM cells were treated with IGF-I (25 ng/ml) for 12 h in serum-free media. Various concentrations of cytotoxic agents then were added to the cells that were incubated continually at 37°C for 24 h. Cell survival was determined with the MTT (3-[4-5-dimenthylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, which assesses mitochondrial function in living cells. The mRNA expression for multidrug resistance gene-I (mdr-I), c-H-ras, and manganese superoxide dismutase (MnSOD) in cells treated with IGF-I was examined by Northern blot or RNase protection assays. The levels of p-glycoprotein, a drug efflux pump encoded by the mdr-I gene, were assessed by Western immunoblotting. Results demonstrated that (1) IGF-I significantly inhibited the cell death and apoptosis of MCLM cells treated with Act-D, LOV, or DOX; (2) IGF-I increased mRNA expression for mdr-I, c-H-ras, and MnSOD; (3) the p-glycoproteins in cells treated with IGF-I or stably transfected with c-H-ras were elevated when compared with control. These results suggest that IGF-I protects MCLM cells against death induced by cytotoxic agents; this acquired drug resistance may be mediated by multiple mechanisms, including promoting expression of mdr-I, c-H-ras, and MnSOD; whereas, the p-glycoprotein level stimulated by IGF-I may result partly from the increase of c-H-ras in the cells. J. Cell. Physiol. 175:141–148, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
In this study we show that insulin-like growth factor (IGF)-I selectively promotes survival and differentiation of amacrine neurons. In cultures lacking this factor, an initial degeneration pathway, selectively affecting amacrine neurons, led to no lamellipodia development and little axon outgrowth. Cell lysis initially affected 50% of amacrine neurons; those remaining underwent apoptosis leading to the death of approximately 95% of them by day 10. Apoptosis was preceded by a marked increase in c-Jun expression. Addition of IGF-I or high concentrations (over 1 microM) of either insulin or IGF-II to the cultures prevented the degeneration of amacrine neurons, stimulated their neurite outgrowth, increased phospho-Akt expression and decreased c-Jun expression. The high insulin and IGF-II concentrations required to protect amacrine cells suggest that these neurons depend on IGF-I for their survival, IGF-II and insulin probably acting through IGF-I receptors to mimic IGF-I effects. Inhibition of phosphatidylinositol-3 kinase (PI 3-kinase) with wortmannin blocked insulin-mediated survival. Wortmannin addition had similar effects to IGF-I deprivation: it prevented neurite outgrowth, increased c-Jun expression and induced apoptosis. These results suggest that IGF-I is essential for the survival and differentiation of amacrine neurons, and activation of PI 3-kinase is involved in the intracellular signaling pathways mediating these effects.  相似文献   

12.
Disruption of endoplasmic reticulum (ER) homeostasis causes accumulation of unfolded and misfolded proteins in the ER, triggering the ER stress response, which can eventually lead to apoptosis when ER dysfunction is severe or prolonged. Here we demonstrate that human MCF-7 breast cancer cells, as well as murine NIH/3T3 fibroblasts, are rescued from ER stress-initiated apoptosis by insulin-like growth factor-I (IGF-I). IGF-I significantly augments the adaptive capacity of the ER by enhancing compensatory mechanisms such as the IRE1 alpha-, PERK- and ATF6-mediated arms of ER stress signalling. During ER stress, IGF-I stimulates translational recovery and induces expression of the key molecular chaperone protein Grp78/BiP, thereby enhancing the folding capacity of the ER and promoting recovery from ER stress. We also demonstrate that the antiapoptotic activity of IGF-I during ER stress may be mediated by a novel, as yet unidentified, signalling pathway(s). Application of signal transduction inhibitors of MEK (U1026), PI3K (LY294002 and wortmannin), JNK (SP600125), p38 (SB203580), protein kinases A and C (H-89 and staurosporine) and STAT3 (Stattic) does not prevent IGF-I-mediated protection from ER stress-induced apoptosis. Taken together, these data demonstrate that IGF-I protects against ER stress-induced apoptosis by increasing adaptive mechanisms through enhancement of ER stress-signalling pathways, thereby restoring ER homeostasis and preventing apoptosis.  相似文献   

13.
14.
To better understand the physiology of cavernous smooth muscle cells (CSMC), particularly their regulation by IGF-I, we isolated CSMC from rats of various ages and grew them as cell cultures. CSMC from very young (1 week of age) and very old (28 months of age) rats secreted the least amounts of IGF-I, and those from 16-week-old rats the most. IGF-I stimulated growth of CSMC at an optimal concentration of 12.5 ng/ml. At this concentration, CSMC from 11-week-old rats showed the highest growth rate and CSMC from 28-month-old rats showed the lowest. The optimal IGF-I concentration for migration of CSMC was 10 ng/ml. At this concentration, CSMC from 4-week-old rats showed the highest migratory rate and CSMC from 28-month-old rats showed the lowest. IGF-I also stimulated VEGF secretion from CSMC at an optimal concentration of 10 ng/ml. At this concentration, CSMC from 16-week-old rats secreted VEGF the most and CSMC from 28-month-old rats secreted the least. The expression levels of IGF-IR paralleled the IGF-I-regulated growth rates of these cells. Expression of IGF-IR was identified in the cavernous smooth muscle and the urethra epithelium of the penis.  相似文献   

15.
The aim of this investigation was to elucidate the roles of insulin-like growth factor-I (IGF-I) and transferrin in the survival and proliferation of Chinese hamster ovary (CHO) cells upon withdrawal of serum. For this purpose, we employed DNA analysis and flow cytometry to compare CHO cell lines expressing either IGF-I alone or IGF-I and transferrin. The ability of cells to cycle and the occurrence of apoptosis were monitored in these cells in serum-free medium. These results indicate that IGF-I alone is able to maintain the viability of CHO cells for an extended length of time in the absence of serum. Transferrin alone does not promote survival or proliferation. Only in the presence of both IGF-I and transferrin do cells survive and proliferate. Therefore, in attached CHO cultures, IGF-I alone does not stimulate cell proliferation but is a requirement for growth in serum-free medium in cooperation with transferrin. We report on the dual role of IGF-I as a survival factor in CHO cells and its interlocking role with transferrin to stimulate cell growth.  相似文献   

16.
Evidence accumulating in the literature supports the concept that insulin-like growth factor I (IGF-I) may be an important local regulator of ovarian function. Recent studies have demonstrated that IGF-I synergistically augments LH stimulation of theca-interstitial cell (TIC) androgen biosynthesis. The purpose of the present studies was to begin to elucidate the molecular mechanisms of the interaction between IGF-I and LH. TIC were purified from ovaries of hypophysectomized immature rats by Percoll gradient centrifugation. When isolated TIC (5 x 10(6) viable cells per dish) were cultured (4 days) in serum-free medium, low amounts (less than 10 ng/ml) of androsterone were produced. Basal androsterone production was not changed by incubation with IGF-I (30 ng/ml). Treatment with LH (50 ng/ml) caused an 85-fold stimulation of androsterone synthesis that was further increased 2.1-fold by concomitant treatment with IGF-I. Immunoblot analysis demonstrated that untreated TIC contained low levels of 17 alpha-hydroxylase/C17-20 lyase enzyme (P450(17 alpha] that were unchanged by incubation with IGF-I alone. LH treatment increased P450(17 alpha) content 5.5-fold and coincubation with LH plus IGF-I increased P450(17 alpha) content 16-fold above control levels. Cholesterol side chain cleavage enzyme (P450scc) was readily detected in immunoblots from untreated TIC. P450scc content was increased 2.6-fold by LH treatment and 4.2-fold by LH plus IGF-I. Interestingly, IGF-I alone induced a 2-fold increase in P450scc. To determine if the increases in P450scc content were associated with increased enzyme activity, progesterone production was measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Both neurons and glia succumb to programmed cell death (PCD) when deprived of growth factors at critical periods in development or following injury. Insulin‐like growth factor‐I (IGF‐I) prevents apoptosis in neurons in vitro. To investigate whether IGF‐I can protect Schwann cells (SC) from apoptosis, SC were harvested from postnatal day 3 rats and maintained in serum‐containing media until confluency. When cells were switched to serum‐free defined media (DM) for 12–72 h, they underwent PCD. Addition of insulin or IGF‐I prevented apoptosis. Bisbenzamide staining revealed nuclear condensation and formation of apoptotic bodies in SC grown in DM alone, but SC grown in DM plus IGF‐I had normal nuclear morphology. The phosphatidylinositol 3‐kinase (PI 3‐K) inhibitor LY294002 blocked IGF‐I–mediated protection. Caspase‐3 activity was rapidly activated upon serum withdrawal in SC, and the caspase inhibitor BAF blocked apoptosis. These results suggest that IGF‐I rescues SC from apoptosis via PI 3‐K signaling which is upstream from caspase activation. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 540–548, 1999  相似文献   

18.
Endothelin-1 is involved in physiology and pathophysiology of the alimentary tract. The peptide modulates blood flow in the gastrointestinal microvasculature and regulates contractility of smooth muscles and, when present in excess, may be an important factor contributing to pathogenesis of various forms of mucosal injury and peristaltic disorders. Mechanisms that regulate endothelin concentration in the gastrointestinal tissues are unknown. Therefore, the aim of our study was to identify and characterize endothelin inactivating peptidases in the rat gastrointestinal mucosa and smooth muscle cells. We have found three high affinity and efficient endothelin-1 inactivating peptidases. The acidic (pH optimum 5.5), membrane-bound, thiorphan- (ED(50) 1.2+/-0.2 nM) and phosphoramidon (ED(50) 150+/-25 pM) sensitive, endothelin-1 inactivating peptidase (K(M) 0.12+/-0.03 microM) was present in the mucosal cells of duodenum and small intestine. The enzyme exhibited high molecular weight (>100 kDa) and characteristics similar to that of the rat and human kidney, acidic metalloendopeptidase that was recently described. Two forms of the unique, low molecular weight (100>MW>30 kDa), alkaline (pH optimum 8.5), specific (K(M) 0.5+/-0.2 microM), thiorphan- and phosphoramidon insensitive, 1,10 phenanthroline inhibitable (ED(50) 0.65+/-0.20 mM, mean+/-S.E.M.) endothelin-1 inactivating peptidase were present exclusively in the duodenal mucosal cells; soluble form in cytosol and membrane-bound form exhibiting an abundance ratio 5:1, respectively. Mucosa of the stomach and large intestine, and gastrointestinal smooth muscle cells do not contain the specific endothelin-1 inactivating peptidases. The enzymes may play a crucial role in regulation of endothelin concentration in the gastrointestinal tissues. Whether impairment of activity of the mucosal endothelin inactivating peptidases, resulting in the increase of concentration of endothelin peptides in gastrointestinal tissues, occurs in various pathological conditions is actually studied in our laboratory.  相似文献   

19.
20.
Insulin-like growth factor-I and central nervous system development.   总被引:3,自引:0,他引:3  
Insulin-like growth factor-I (IGF-I), a 70-amino acid-protein structurally similar to insulin, promotes cell proliferation and differentiation in multiple tissues. Most of its effects are mediated by the Type I IGF receptor (IGF-IR), a heterotetramer that has tyrosine kinase activity and phosphorylates insulin receptor substrates (IRS-1 and 2) which leads to the activation of two downstream signaling cascades: the MAP kinase and the phosphatidylinositol 3-kinase (P3K) cascades. The growth-promoting effects of IGF-I are prominent in the nervous system, qualifying this molecule as a neurotrophin. Although the primary regulator of IGF-I expression is growth hormone (GH), the developmental expression of IGF-I in various tissues precedes that of GH, supporting an independent role of IGF-I in embryonic and fetal life [1]. This review will examine the effect of IGF-I on central nervous system (CNS) development. The specialized structure of the CNS is the product of a complex series of biological events which result from the interaction between the cells' genetic program and environmental influences. CNS development begins in the embryo with dorsal ectodermal cell proliferation to form the neural plate, and, with its closure, the neural tube, followed by the rapid division of pluripotential cells, their migration to the periphery of the neural tube, and differentiation into neural or glial cells. During the latter stages, cells form special structures such as nuclei, ganglia, cerebral cortical layers, and they also develop a network with their cytoplasmic extensions, neurites. Many more cells and connections are generated in fetal life than are found in the mature organism. This excessive production of some cell groups and neurites may compensate for tissue loss due to various injuries, and their selective elimination also constitutes an efficient way to organize the architecture of the CNS. This elimination is believed to be accomplished by apoptosis. The cells' intrinsic program for development includes the expression of various genes at different times. Environmental influences, such as extracellular matrix (ECM) molecules that attract or repel cells, afferent inputs, and target-derived diffusible molecules modify and modulate cellular behavior. IGF-I is among the molecules which affect several steps involved in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号