首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular and intracellular unit responses of thepars principalis of the medial geniculate body to stimulation of the first (AI), second (AII), and third (AIII) auditory cortical areas were studied in cats immobilized with D-tubocurarine. In response to auditory cortical stimulation both antidromic (45–50%) and orthodromic (50–55%) responses occurred in the geniculate neurons. The latent period of the antidromic responses was 0.3–2.5 msec and of the orthodromic 2.0–18.0 msec. Late responses had a latent period of 30–200 msec. Of all neurons responding antidromically to stimulation of AII, 63% responded antidromically to stimulation of AI also, confirming the hypothesis that many of the same neurons of the medial geniculate body have projections into both auditory areas. Orthodromic responses of geniculate neurons consisted either of 1 or 2 spikes or of volleys of 8–12 spikes with a frequency of 300–600/sec. It is suggested that the volleys of spikes were discharges of inhibitory neurons. Intracellular responses were recorded in the form of antidromic spikes, EPSPs, EPSP-spike, EPSP-spike-IPSP, EPSP-IPSP, and primary IPSP. Over 50% of primary IPSP had a latent period of 2.0–4.0 msec. It is suggested that they arose through the participation of inhibitory interneurons located in the medial geniculate body.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 5–12, January–February, 1976.  相似文献   

2.
Responses of 239 neurons of the pericruciate cortex to stimulation of the medial geniculate body and pyramidal tract were investigated (189 extracellularly, 50 intracellularly) in cats anesthetized with thiopental and immobilized with D-tubocurarine. In response to stimulation of the medial geniculate body, the mean spontaneous firing rate of 63.6% of neurons in the pericruciate cortex increased by 10–25%, in 23.6% of neurons it decreased within the same limits, and mixed effects were observed in 5.5% of neurons. Phasic responses to single stimulation of the medial geniculate body were observed in 20% of neurons of the pericruciate cortex. Responses with a latent period of 0.3–1.0 msec (16%) were classed as antidromic, those with a latent period of 1.5–2.0 msec (20%) as orthodromic, monosynaptic, and those with a latent period of 2.5–4.0 msec or more (64%) as polysynaptic. With intracellular recording, excitatory responses of the EPSP, EPSP-AP, and AP type with latent periods of between 1.3 and 19.5 msec developed in 78.2% of cells. IPSPs, which were recorded in 21.8% of neurons, were usually found as components of mixed responses; primary IPSPs were found in only two cases. Monosynaptic connection of the medial geniculate body was shown to take place with neurons of the pericruciate cortex that did not belong to the pyramidal tract.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 18–24, January–February, 1979.  相似文献   

3.
In experiments on curarized cats unit responses in the dorsal lateral geniculate body to stimulation of various zones in area 17 of the visual cortex were analyzed. Of all cells tested 69% were found to respond antidromically and 8% orthodromically; in 7.6% of cells IPSPs occurred either after an initial antidromic spike or without it. The velocities of conduction of excitation along the corticopetal fibers of the optic radiation varied from 28 to 4.3 m/sec, but the three commonest groups of fibers had conduction velocities of 28–19, 14–12, and 10–9.5 m/sec. A difference between latent periods of antidromic responses of the same neurons was found to stimulation of different zones of the visual cortex; this indicates that axons of geniculo-cortical fibers split into several branches which form contacts with several neurons in area 17 of the visual cortex. The degree and possible mechanisms of cortical influences on neurons of the lateral geniculate body are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 243–249, May–June, 1976.  相似文献   

4.
During acute experiments on awake cats the response of 98 neurons belonging to the head and tail of the caudate nucleus to direct electrical stimulation of the optic tract and presentation of photic stimuli was investigated using extracellular recording techniques. Of the test neurons 34.6% responded to stimulation of the optic tract and 36.2% to optic stimulation. Long latency (over 40 msec for the optic tract and over 80 msec for visual stimulation) excitatory responses prevailed in both cases. A small number of cells responded to optic tract stimulation with short latencies of 5–14 msec. Both types of stimulation were presented during investigations of 58 units of which eight were found to respond to both stimuli. The latter varied in their reaction to different stimuli and their response pattern. Findings are discussed in relation to the possible pathways by which visual information reaches the cortical structure under study.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 476–485, July–August, 1986.  相似文献   

5.
Responses of relay neurons of the dorsal lateral geniculate body to stimulation of area 17 of the visual cortex and the optic chiasma were studied in curarized cats. A high degree of correlation was found between the latent periods of antidromic responses of these neurons to stimulation of the visual cortex and orthodromic responses of the same neurons to stimulation of the optic chiasma (r=0.895; P=0.01). In 9% of cases antidromic unit responses were recorded to stimulation of the optic chiasma, evidence that the optic nerve contains centrifugal fibers. The functional role of the temporal dispersion of the afferent flow in the visual system is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 606–612, November–December, 1978.  相似文献   

6.
Responses of 98 auditory cortical neurons to electrical stimulation of the medial geniculate body (MGB) were recorded (45 extracellulary, 53 intracellularly) in experiments on cats immobilized with tubocurarine. Responses of the same neurons to clicks were recorded for comparison. Of the total number of neurons, 75 (76%) responded both to MGB stimulation and to clicks, and 23 (24%) to MGB stimulation only. The latent period of extracellularly recorded action potentials of auditory cortical neurons in response to clicks varied from 7 to 28 msec (late responses were disregarded), and that to MGB stimulation varied from 1.5 to 12.5 msec. For EPSPs these values were 8–13 and 1–4 msec respectively. The latent period of IPSPs arising in response to MGB stimulation varied from 2.2 to 6.5 msec; for 34% of neurons it did not exceed 3 msec. The difference between the latent periods of responses to clicks and to MGB stimulation varied for different neurons from 6 to 21 msec. Responses of 11% of neurons to MGB stimulation, recorded intracellularly, consisted of sub-threshold EPSPs, while responses of 23% of neurons began with an EPSP which was either followed by an action potential and subsequent IPSP or was at once cut off by an IPSP; 66% of neurons responded with primary IPSPs. Neurons responding to MGB stimulation by primary IPSPs are distributed irregularly in the depth of the cortex: there are very few in layers III and IV and many more at a depth of 1.6–2 mm. Conversely, excited neurons are predominant in layer III and IV, and they are few in number at a depth of 1.6–2 mm. It is concluded that the afferent volley reaching the auditory cortex induces excitation of some neurons therein and, at the same time, by the principle of reciprocity, induces inhibition of others. This afferent inhibition takes place with the participation of inhibitory interneurons, and in some cells the inhibition is recurrent. The existence of reciprocal relationships between neurons in different layers of the auditory cortex is postulated.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 23–31, January–February, 1972.  相似文献   

7.
Short-latency responses of single relay neurons of the lateral geniculate body to electrical stimulation of the optic tract were studied. The response of many neurons was complex and could consist of a series of (1–3) spikes with fixed latent periods. Each spike of such a response can be recorded on the EPSP in the absence of other spikes, preserving its latent period. The fixed latent periods of different relay neurons may vary from one to another. In the intervals between spikes with these latent periods active inhibition (IPSP) takes place. The series of spikes, EPSP, and IPSP is completed, as a rule, by a long IPSP.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 28–32, January–February, 1973.  相似文献   

8.
Responses of 251 neurons in the anterior part of the middle suprasylvian gyrus to stimulation of primary sensory (auditory, visual, somatosensory) areas and also to acoustic, visual, and somatosensory stimuli were studied in acute experiments on cats anesthetized with chloralose (40 mg/kg) and pentobarbital (20 mg/kg). Three groups of neurons were distinguished by their responses to stimulation of the primary sensory areas: those responding by an increased firing rate (117) or by inhibition (35) and those not responding (99). Responses of 193 neurons to stimulation of the peripheral afferent systems were analyzed. Neurons of the parietal associative cortex responded more frequently to cortical stimulation than to peripheral. By the duration of the latent period of their response to cortical stimulation the neurons were divided into three groups: those with short (less than 20 msec), medium (20–30 msec), and long latent periods (over 30 msec). The first group was the largest.Kemerovo State Medical Institute. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 524–530, September–October, 1972.  相似文献   

9.
In response to stimulation of the posterior lateral nucleus in unanesthetized cats immobilized with D-tubocurarine an evoked potential consisting of three components with a latent period of 3–5 msec appeared in area 5b of the suprasylvian gyrus. All three components were reversed at about the same depth in the cortex (1500–1600 µ). Reversal of the potential shows that it is generated in that area by neurons evidently located in deeper layers of the cortex and is not conducted to it physically from other regions. Responses of 53 spontaneously active neurons in the same area of the cortex to stimulation of the posterior lateral nucleus were investigated. A characteristic feature of these reponses was that inhibition occurred nearly all of them. In 22 neurons the responses began with inhibition, which lasted from 30 to 400 msec. In 30 neurons inhibition appeared immediately after excitation while one neuron responded by excitation alone. The latent periods of the excitatory responses varied from 3 to 28 msec. The short latent period of the evoked potentials and of some single units responses (3–6 msec) confirms morphological evidence of direct connections between the posterior lateral nucleus and area 5b of the suprasylvian gyrus. Repetitive stimulation of that nucleus led to strengthening of both excitation and inhibition. Influences of the posterior lateral nucleus were opposite to those of the specific nuclei: the posterior ventrolateral nucleus and the lateral and medial geniculate bodies. Stimulation of the nonspecific reticular nucleus, however, evoked discharges from neurons like those produced by stimulation of the posterior lateral nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 502–509, September–October, 1973.  相似文献   

10.
Responses of 150 neurons in the magnocellular part of the medial geniculate body to clicks and to electrodermal stimulation of the contralateral forelimb were investigated in cats immobilized with myorelaxin. Of the total number of neurons 65% were bimodal, 16.6% responded only to clicks, and 15.4% only to electrodermal stimulation. The unitary responses were excitatory (spike potentials) and inhibitory (inhibition of spontaneous activity). Responses beginning with excitation occurred more frequently to stimulation by clicks than to electrodermal stimulation, whereas initial inhibition occurred more often to electrodermal stimulation. The latent period of the initial spike potentials in response to clicks and to electrodermal stimulation was 5–27 and 6–33 (mean 11.6 and 16.2) msec respectively. Positive correlation was found between the latent periods of spike potentials recorded in the same neurons in response to clicks and to electrodermal stimulation, and also to electrodermal stimulation and to stimulation of the dorsal funiculus of the spinal cord. It is concluded that the magnocellular division of the medial genicculate body is a transitional structure between the posterior ventral nucleus and the parvocellular division of the medial geniculate body, and that in addition, it is connected more closely with the auditory than with the somatosensory system. It is suggested that the somatosensory input into the magnocellular division of the medial geniculate body is formed mainly by fibers of the medial lemniscus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 133–141, March–April, 1978.  相似文献   

11.
Changes in the parameters of responses of "low-frequency" and "high-frequency" neurons evoked in the lateral geniculate body by flashes or electrical stimulation of the optic nerve were investigated in immobilized and anesthetized rabbits after strychninization of the visual cortex. Under these conditions mainly an increase in the mean discharge frequency in the responses and a decrease in their latent periods were found in the "low-frequency" neurons, probable evidence of dominance of corticofugal facilitation. In most "high-frequency" neurons, on the other hand, the mean discharge frequency in the responses decreased and the latent periods were increased, evidence of dominance of corticofugal inhibition. It is suggested that reciprocal corticofugal influences exist on neurons connected with central and peripheral channels of the visual projection pathway.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow, Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 459–466, September–October, 1976.  相似文献   

12.
A microelectrode investigation was made of responses of 72 physiologically identified neurons of the ventral posterior (VP) and 116 neurons of the ventral lateral (VL) thalamic nuclei to electrical stimulation of the reticular (R) thalamic nucleus. Mainly those neurons of VP and VL (73.7 and 86.2% respectively) which responded to stimulation of the first motor area and nucleus interpositus of the cerebellum responded to stimulation of R; 19.8% of VL neurons tested responded to stimulation of R by an antidromic action potential with latent period of 0.5–2.0 msec and 46.6% of neurons responded by orthodromic excitation; 23% of orthodromic responses had a latent period of 0.9–3.5 msec and 77% a latent period of 4.0–21.0 msec; 19.8% of VL neurons tested were inhibited. Among IPSPs recorded only one was monosynaptic (1.0 msec) and the rest polysynaptic. It is postulated that both R neurons are excitatory and that the inhibition which develops in VL neurons during stimulation of R are connected mainly with activation of inhibitory interneurons outside the reticular nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 477–485, September–October, 1977.  相似文献   

13.
Spike responses of single neurons in the primary visual cortex and lateral geniculate body to random presentation of local photic stimuli in different parts of the receptive field of the cell were studied in acute experiments on curarized cats. Series of maps of receptive fields with time interval of 20 msec obtained by computer enabled the dynamics of the excitatory and inhibitory zones of the field to be assessed during development of on- and off-responses to flashes. Receptive fields of all cortical and lateral geniculate body neurons tested were found to undergo regular dynamic reorganization both after the beginning and after the end of action of the photic stimulus. During the latent period of the response no receptive field was found in the part of the visual field tested, but later a small zone of weak responses appeared only in the center of the field. Gradually (most commonly toward 60–100 msec after application of the stimulus) the zone of the responses widened to its limit, after which the recorded field began to shrink, ending with complete disappearance or disintegration into separate fragments. If two bursts of spikes were generated in response to stimulation, during the second burst the receptive field of the neuron changed in the same way. The effects described were clearly exhibited if the level of background illumination, the intensity of the test bars, their contrast with the background, duration, angles subtended, and orientation were varied, although the rate and degree of reorganization of the receptive field in this case changed significantly. The functional importance of the effect for coding of information about the features of a signal by visual cortical neurons is discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 622–630, November–December, 1982.  相似文献   

14.
Investigation of unit responses of the cerebellar cortex (lobules VI–VII of the vermis) to acoustic stimulation showed that the great majority of neurons responded by a discharge of one spike or a group of spikes with a latent period of 10–40 msec and with a low fluctuation value. Neurons identified as Purkinje cells responded to sound either by inhibition of spontaneous activity or by a "climbing fiber response" with a latent period of 40–60 msec and with a high fluctuation value. In 4 of 80 neurons a prolonged (lasting about 1 sec or more), variable response with a latent period of 225–580 msec was observed. The minimal thresholds of unit responses to acoustic stimuli were distributed within the range from –7 to 77 dB, with a mode from 20 to 50 dB. All the characteristics of the cerebellar unit responses studied were independent of the intensity, duration, and frequency of the sound, like neurons of short-latency type in the inferior colliculi. In certain properties — firing pattern, latent period, and threshold of response — the cerebellar neurons resemble neurons of higher levels of the auditory system: the medial geniculate body and auditory cortex.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 3–12, January–February, 1973.  相似文献   

15.
The characteristics of neurons in Area 17 of the visual cortex in cats were investigated by extracellular recording of their activity. Unit responses to flashes modulated by intensity and duration (100 µsec-1 sec) were recorded. Of 80 neurons tested, 67.6% were spontaneously active and 32.4% were silent. The threshold responses of the neurons to flashes varied by 7 logarithmic units. The distribution curve of the cells by response thresholds had one maximum corresponding to an energy of the order of 1–10 lm·sec. The time during which the cells could summate excitation did not exceed a mean value of 34 msec. Depending on the latent periods of the visual cortical neurons they can be divided into three groups. The first group includes neurons responding 20–40 msec after stimulation, the second and third neurons responding after 100–120 and 160–180 msec, respectively. Photic stimulation considerably altered the ratio between the numbers of cells generating spikes with high and low frequency. No correlation was found between the sensitivity of the visual cortical cells to light, the latent period of their response, and the critical time of summation. This shows that the cortex contains many duplicate units which are grouped together on the basis of only one of the functional characteristics of their spike response.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 173–179, March–April, 1970.  相似文献   

16.
In experiments on immobilized, lightly anesthetized turtles the presence of visual and somatic representation was established in the subcortical striatal division of the forebrain — the pallial thickening, the dorsal ventricular ridge, and the putamen. In their physiological characteristics they are similar to the corresponding representation in the general cortex. The absence of significant differences between the latent periods of cortical and striatal evoked potentials to flashes and to stimulation of the dorsal thalamus indicates that visual projection fibers (from the lateral geniculate body) terminate at both cortical and striatal levels. Differences in the distribution of latent periods of unit responses in the cortex to visual and thalamic stimulation are due to the presence of a rotundo-telencephalic visual channel, with direct connections with the striatal and polysynaptic connections with the general cortex, as well as the geniculo-telencephalic tract. Considerable differences between the latent periods of the evoked potentials and also between unit responses to electrodermal stimulation in the cortical and striatal structures indicate that somatic projection fibers relay in the striatum on their path to the general cortex. Consequently, the somatosensory system of turtles is less corticalized than the visual system. Comparison of the results described with those obtained by workers studying other vertebrates suggests that the afferent supply of the striatum may be reorganized in the transition from premammals to mammals.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 184–193, March–April, 1973.  相似文献   

17.
Unit responses of the lateral geniculate body of the immobilized cat to electrical stimulation of the optic tract were studied. Responses of about 80 cells were compared and histograms of latencies and thresholds of their responses to electrical stimulation of their afferents were plotted. The distribution of the cells by latent periods was bimodal and by thresholds monomodal. Correlation was established between the various parameters of the cell reponses to electrical stimulation of afferents and to light. Correlation analysis showed that the cell population investigated is heterogeneous and consists of three groups.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 485–489, September–October, 1973.  相似文献   

18.
Unit responses of the first (SI) somatosensory area of the cortex to stimulation of the second somatosensory area (SII), the ventral posterior thalamic nucleus, and the contralateral forelimb, and also unit responses in SII evoked by stimulation of SI, the ventral posterior thalamic nucleus, and the contralateral forelimb were investigated in experiments on cats immobilized with D-tubocurarine or Myo-Relaxin (succinylcholine). The results showed a substantially higher percentage of neurons in SII than in SI which responded to an afferent stimulus by excitation brought about through two or more synaptic relays in the cortex. In response to cortical stimulation antidromic and orthodromic responses appeared in SI and SII neurons, confirming the presence of two-way cortico-cortical connections. In both SI and SII intracellular recording revealed in most cases PSPs of similar character and intensity, evoked by stimulation of the cortex and nucleus in the same neuron. Latent periods of orthodromic spike responses to stimulation of nucleus and cortex in 50.5% of SI neurons and 37.1% of SII neurons differed by less than 1.0 msec. In 19.6% of SI and 41.4% of SII neurons the latent period of response to cortical stimulation was 1.6–4.7 msec shorter than the latent period of the response evoked in the same neuron by stimulation of the nucleus. It is concluded from these results that impulses from SI play an important role in the afferent activation of SII neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 351–357, July–August, 1976.  相似文献   

19.
Extra — and intracellular unit responses in area AII to stimulation of geniculocortical fibers and of area AI were studied in cat immobilized with D-tubocurarine. In response to stimulation of geniculocortical fibers, antidromic mono-, di-, and polysynaptic spikes were generated by neurons in area AII. The number of antidromic responses in area AII was about half that found in area AI under the same conditions of stimulation. Most of the orthodromic responses were di- and polysynaptic. Intracellular responses also were recorded in the form of EPSPs, EPSP-IPSPs, and primary IPSPs. Stimulation of area AI evoked responses in the neurons of area AII with latent periods of 0.75–6.0, 6.1–16.0, 18.0–23.0, and 60–100 msec. Removal of the medial geniculate body led to a marked decrease in the number of responses with latent periods of 6.1–16.0 msec. Some neurons of area AII responded by spikes to stimulation of both the geniculocortical fibers and area AI. Comparison of the latent periods of responses to these two types of stimulation showed that impulses from area AI to area AII are directed both to input neurons for impulses from the medial geniculate body and to neurons at subsequent stages of the intracortical neuronal change. In response to stimulation of cortical area AI, disynaptic IPSPs appeared in many neurons of area AII. Only one IPSP with a latent period of 1.0 msec, regardable as monosynaptic, was recorded.  相似文献   

20.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号