共查询到20条相似文献,搜索用时 8 毫秒
1.
Ficcadenti Nadia Sestili Sara Pandolfini Tiziana Cirillo Chiara Rotino Giuseppe Leonardo Spena Angelo 《Molecular breeding : new strategies in plant improvement》1999,5(5):463-470
Parthenocarpy was engineered in two genotypes of Lycopersicon esculentum Mill. by using the DefH9-iaaM chimeric gene. The parthenocarpic trait consists of fruit set and growth in the absence of fertilization. Seedless parthenocarpic fruits were obtained from emasculated flowers, and fruits with seeds from pollinated flowers. All parthenocarpic tomato plants analysed expressed the DefH9-iaaM gene during flower development. The fruit set percentage of emasculated transgenic flowers was similar to that of control plants. In 7 out of 8 independent transgenic plants, the fresh weight of fruits derived from pollinated or emasculated flowers did not significantly differ from that of fruits obtained by pollination of the control plants. The pH of the parthenocarpic fruit was generally unaffected and the soluble solid concentration was either unchanged or increased. Thus, the DefH9-iaaM gene is a genetic tool that might be used to improve tomato productivity. 相似文献
2.
Mónica Medina Edelín Roque Benito Pineda Luis Cañas Manuel Rodriguez‐Concepción José Pío Beltrán Concepción Gómez‐Mena 《Plant biotechnology journal》2013,11(6):770-779
Fruit set and fruit development in tomato is largely affected by changes in environmental conditions, therefore autonomous fruit set independent of fertilization is a highly desirable trait in tomato. Here, we report the production and characterization of male‐sterile transgenic plants that produce parthenocarpic fruits in two tomato cultivars (Micro‐Tom and Moneymaker). We generated male‐sterility using the cytotoxic gene barnase targeted to the anthers with the PsEND1 anther‐specific promoter. The ovaries of these plants grew in the absence of fertilization producing seedless, parthenocarpic fruits. Early anther ablation is essential to trigger the developing of the transgenic ovaries into fruits, in the absence of the signals usually generated during pollination and fertilization. Ovaries are fully functional and can be manually pollinated to obtain seeds. The transgenic plants obtained in the commercial cultivar Moneymaker show that the parthenocarpic development of the fruit does not have negative consequences in fruit quality. Throughout metabolomic analyses of the tomato fruits, we have identified two elite lines which showed increased levels of several health promoting metabolites and volatile compounds. Thus, early anther ablation can be considered a useful tool to promote fruit set and to obtain seedless and good quality fruits in tomato plants. These plants are also useful parental lines to be used in hybrid breeding approaches. 相似文献
3.
In angiosperms, auxin phytohormones play a crucial regulatory role in fruit initiation. The expression of auxin biosynthesis genes in ovules and placenta results in uncoupling of tomato (Solanum lycopersicum) fruit development from fertilization with production of parthenocarpic fruits. We have identified two newly described genes, named Aucsia genes, which are differentially expressed in auxin-synthesis (DefH9-iaaM) parthenocarpic tomato flower buds. The two tomato Aucsia genes encode 53-amino-acid-long peptides. We show, by RNA interference-mediated gene suppression, that Aucsia genes are involved in both reproductive and vegetative plant development. Aucsia-silenced tomato plants exhibited auxin-related phenotypes such as parthenocarpic fruit development, leaf fusions, and reflexed leaves. Auxin-induced rhizogenesis in cotyledon explants and polar auxin transport in roots were reduced in Aucsia-silenced plants compared with wild-type plants. In addition, Aucsia-silenced plants showed an increased sensitivity to 1-naphthylphthalamic acid, an inhibitor of polar auxin transport. We further prove that total indole-3-acetic acid content was increased in preanthesis Aucsia-silenced flower buds. Thus, the data presented demonstrate that Aucsia genes encode a novel family of plant peptides that control fruit initiation and affect other auxin-related biological processes in tomato. Aucsia homologous genes are present in both chlorophytes and streptophytes, and the encoded peptides are distinguished by a 16-amino-acid-long (PYSGXSTLALVARXSA) AUCSIA motif, a lysine-rich carboxyl-terminal region, and a conserved tyrosine-based endocytic sorting motif. 相似文献
4.
Rivka Barg Efrat Meir Dvora Lapushner Rafael Frankel Yehiam Salts 《Physiologia plantarum》1990,80(3):417-424
The denatured protein profiles of developing tomato ( Lycopersicon esculentum Mill.) fruits, from the anthesis stage up to fruits at 30% of their final diameter, were examined in a pai-2l pat-2 parthenocarpic line and in its near isogenic non-partheno-carpic line. At anthesis no differences were detected between the protein patterns of ovaries developed on parthenocarpic and non-parthenocarpic plants. In subsequent stages the seeded and seedless fruits differed in the pattern of manifestation of several abundant proteins, none of which seem to be included in seeds The most prominent difference was found in an insoluble protein of 62 kDa; in developing seeded fruits of either the parthenocarpic or the non-parthenocarpic line, its rate of decline was much faster than in seedless fruits. In seeded fruits larger than 4-6 mm in diameter it was scarcely detected, whereas in parthenocarpic seedless 8–10 mm fruits it was still abundant. This protein is fruit specific; it is also enhanced in chemically (n-n-tolyl phthalamic acid) – induced parthenocarpic fruits of the non-parthenocarpic line. The prolonged manifestation in the parthenocarpic fruits results from de novo synthesis of this protein. There are indications that it is not a stress-related protein. This is the first demonstration of an association between the pattern of modulation of a protein and the phenotypic expression of genetically controlled parthenocarpy. 相似文献
5.
6.
7.
To characterize the phenomenon of natural parthenocarpy in tomato ( Lycopersicon esculentum Mill.) two different approaches have been followed. At a developmental level, the ovary weights of three non-parthenocarpic lines and three near-isogenic parthenocarpic ( pat-2 ) lines were compared. Four developmental stages were considered: flower bud, preanthesis, anthesis and 4 days after anthesis. The parthenocarpic lines displayed ovary weights higher than their respective non-parthenocarpic lines from preanthesis to 4 days after anthesis. A molecular approach involved comparison of in vitro translation products from flower RNAs taken from the same developmental stages of non-parthenocarpic and near-isogenic parthenocarpic ( pat-2 and pat-3/pat-4 ) lines. Analysis by two-dimensional polyacrylamide gel electrophoresis showed the differential expression of a 30-kDa product in parthenocarpic materials from preanthesis to anthesis. These results suggest that the physiological and molecular events responsible for parthenocarpy begin at the preanthesis stage, before the flower is completely mature and receptive to pollination. The differential expression of this in vitro translation product in pat-2 and pat-3/pat-4 genotypes also suggests a common or confluent molecular basis in genetically controlled parthenocarpy. 相似文献
8.
Interaction of 4-chloroindole-3-acetic acid and gibberellins in early pea fruit development 总被引:2,自引:0,他引:2
In pea, normal pod (pericarp) growth requires the presence of seeds; and in the absence of seeds, gibberellins (GAs) and/or auxins can stimulate pericarp growth. To further characterize the function of naturally occurring pea GAs and the auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), on pea fruit development, profiles of the biological activities of GA3, GA1, and 4-Cl-IAA on pericarp growth were determined separately and in combination on pollinated deseeded ovaries (split-pericarp assay) and nonpollinated ovaries. Nonpollinated ovaries (pericarps) responded differently to exogenous GAs and 4-Cl-IAA than pollinated deseeded pericarps. In nonpollinated pericarps, both GA3 and 4-Cl-IAA stimulated pericarp growth, but GA3 was significantly more active in stimulating all measured parameters of pericarp growth than 4-Cl-IAA. 4-Cl-IAA, GA1, and GA3 were observed to stimulate pericarp growth similarly in pollinated deseeded pericarps. In addition, the synergistic effect of simultaneous application of 4-Cl-IAA and GAs on pollinated deseeded pericarp growth supports the hypothesis that GAs and 4-Cl-IAA are involved in the growth and development of pollinated ovaries. 相似文献
9.
The role and source of gibberellins (GAs) involved in the development of parthenocarpic fruits of Pisum sativum L. has been investigated. Gibberellins applied to the leaf adjacent to an emasculated ovary induced parthenocarpic fruit development on intact plants. The application of gibberellic acid (GA3) had to be done within 1 d of anthesis to be fully effective and the response was concentration-dependent. Gibberellin A1 and GA3 worked equally well and GA20 was less efficient. [3H]Gibberellin A1 applied to the leaf accumulated in the ovary and the accumulation was related to the growth response. These experiments show that GA applied to the leaf in high enough concentration is translocated to the ovary. Emasculated ovaries on decapitated pea plants develop without application of growth hormones. When [3H] GA1 was applied to the leaf adjacent to the ovary a substantial amount of radioactivity accumulated in the growing shoot of intact plants. In decapitated plants, however, this radioactivity was mainly found in the ovary. There it caused growth proportional to the accumulation of CA1. Application of LAB 150978, an inhibitor of GA biosynthesis, to decapitated plants inhibited parthenocarpic fruit development and this inhibition was counteracted by the application of GA3 (either to the fruit, or the leaf adjacent to the ovary, or through the lower cut end of the stem). All evidence taken together supports the view that parthenocarpic pea fruit development on topped plants depends on the import of gibberellins or their precursors, probably from the vegetative aerial parts of the plant.Abbreviations FW
flesh weight
- GAn
gibberellin An
- HPLC
high-performance liquid chromatography 相似文献
10.
Down-regulation of TM29, a tomato SEPALLATA homolog,causes parthenocarpic fruit development and floral reversion 总被引:4,自引:0,他引:4
We have characterized the tomato (Lycopersicon esculentum Mill.) MADS box gene TM29 that shared a high amino acid sequence homology to the Arabidopsis SEP1, 2, and 3 (SEPALLATA1, 2, and 3) genes. TM29 showed similar expression profiles to SEP1, with accumulation of mRNA in the primordia of all four whorls of floral organs. In addition, TM29 mRNA was detected in inflorescence and vegetative meristems. To understand TM29 function, we produced transgenic tomato plants in which TM29 expression was down-regulated by either cosuppression or antisense techniques. These transgenic plants produced aberrant flowers with morphogenetic alterations in the organs of the inner three whorls. Petals and stamens were green rather than yellow, suggesting a partial conversion to a sepalloid identity. Stamens and ovaries were infertile, with the later developing into parthenocarpic fruit. Ectopic shoots with partially developed leaves and secondary flowers emerged from the fruit. These shoots resembled the primary transgenic flowers and continued to produce parthenocarpic fruit and additional ectopic shoots. Based on the temporal and spatial expression pattern and transgenic phenotypes, we propose that TM29 functions in floral organ development, fruit development, and maintenance of floral meristem identity in tomato. 相似文献
11.
The induction of parthenocarpic fruit set was investigated using the apple cvs. Golden Delicious and Jonagold. The gibberellins GA3, GA4, GA5 and GA7 and the synthetic phenylurea-type cytokinin CPPU (N-(2-chloro-4-pyridyl)-N-phenylurea), were applied alone and in combination to unpollinated flowers at the end of petal fall. Gibberellins induced only a marginal final set of parthenocarpic fruits. CPPU sprays were more effective, particularly in the first year. When applied in combination, CPPU and gibberellins had a positive synergistic effect on parthenocarpic fruit set and fruit size, but a negative effect on flower induction the next year. After CPPU + GA sprays, percent fruit set was similar, or greater, compared to natural pollinated trees. The parthenocarpic fruits induced by CPPU + GA had an increased length to diameter ratio. CPPU stimulated, and GA4 and GA7 reduced, the russeting of the parthenocarpic fruits. The internal quality of the fruits was hardly affected, but Ca-deficiency symptoms occurred more frequently in parthenocarpic fruits. 相似文献
12.
Polyamines have been attributed a general role in fruit development in several plants like pea and tomato. To investigate
the involvement of these compounds in parthenocarpic fruit development in Citrus clementina, we have isolated three genes encoding aminopropyl transferases in this species: CcSPDS, CcSPM1 and CcACL5. The unambiguous identity of the proteins encoded by these genes was confirmed by phylogenetic analysis and by heterologous
expression in yeast mutants deficient in aminopropyl transferase activity. The expression of these genes in C. clementina is not restricted to ovaries and fruits, but it is also detectable all throughout the plant. More importantly, gibberellin-induced
parthenocarpic fruit set caused a decrease in CcSPDS expression in ovaries, paralleled by a decrease in spermidine; while the expression of CcSPM1 and CcACL5 was basically unaffected, resulting in the maintenance of spermine concentration during early fruit development. In addition,
the variation in putrescine content was paralleled by changes in the expression of one of the two putative CcODC paralogs. 相似文献
13.
A new system has been developed to study hormone-directed transport in intact plants during parthenocarpic fruit set induced by gibberellins. Gibberellic acid (GA3 ) and gibberellin A1 (GA1 ) applied to unpollinated ovaries of pea ( Pisum sativum L. cv. Alaska) promoted sucrose transport from the leaf to the site of hormone application. In vivo experiments showed an early (30 min) accumulation of [14 C]-sucrose in ovaries of pea stimulated by gibberellins. This activation of sucrose transport appears to be mediated by gibberellins (GA1 , GA3 ), increasing both loading of phloem with sucrose in the leaf (source) and sucrose unloading in the ovary (sink). The ability of pea tissue segments to take up sucrose in vitro was not affected by the hormonal treatment. 相似文献
14.
15.
16.
17.
de Freitas ST Handa AK Wu Q Park S Mitcham EJ 《The Plant journal : for cell and molecular biology》2012,71(5):824-835
Blossom-end rot (BER) in tomato fruit (Solanum lycopersicum) is believed to be a calcium (Ca(2+) ) deficiency disorder, but the mechanisms involved in its development are poorly understood. Our hypothesis is that high expression of pectin methylesterases (PMEs) increases Ca(2+) bound to the cell wall, subsequently decreasing Ca(2+) available for other cellular functions and thereby increasing fruit susceptibility to BER. The objectives of this study were to evaluate the effect of PME expression, and amount of esterified pectins and Ca(2+) bound to the cell wall on BER development in tomato fruit. Wild-type and PME-silenced tomato plants were grown in a greenhouse. At full bloom, flowers were pollinated and Ca(2+) was no longer provided to the plants to induce BER. Our results show that suppressing expression of PMEs in tomato fruit reduced the amount of Ca(2+) bound to the cell wall, and also reduced fruit susceptibility to BER. Both the wild-type and PME-silenced fruit had similar total tissue, cytosolic and vacuolar Ca(2+) concentrations, but wild-type fruit had lower water-soluble apoplastic Ca(2+) content and higher membrane leakage, one of the first symptoms of BER. Our results suggest that apoplastic water-soluble Ca(2+) concentration influences fruit susceptibility to Ca(2+) deficiency disorders. 相似文献
18.
Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots 下载免费PDF全文
José Ángel Martín‐Rodríguez Juan Antonio Ocampo Nuria Molinero‐Rosales Danuše Tarkowská Omar Ruíz‐Rivero José Manuel García‐Garrido 《Physiologia plantarum》2015,154(1):66-81
Gibberellins (GAs) are key regulators of plant growth and development and recent studies suggest also a role during arbuscular mycorrhizal (AM) formation. Here, complementary approaches have been used to obtain a clearer picture that correlates AM fungal development inside roots with GA metabolism. An extensive analysis of genes associated with GA metabolism as well as a quantification of GA content in roots was made. Application of GA3 and its biosynthesis inhibitor prohexadione calcium (PrCa) combined with a GA‐constitutive response mutant (procera) were used to determine whether fungal colonization is altered by the level of these hormones or by changes in the GA‐signaling pathway. The increased levels of specific GAs from the 13‐hydroxylation pathway in mycorrhizal roots correlate closely with the increased expression of genes coding enzymes from the GA biosynthetic trail. The imbalance of GAs in tomato roots caused by exogenous applications of GA3 or PrCa affects arbuscules in both negative and positive ways, respectively. In addition, procera plants were adversely affected by the mycorrhization process. Our findings demonstrate that an imbalance in favor of an increased amount of GAs negatively affects the frequency of mycorrhization and particularly the arbuscular abundance in tomato mycorrhizal roots and the results point out that AM formation is associated with a change in the 13‐hydroxylation pathway of GAs. 相似文献
19.
20.
Chevalier C Nafati M Mathieu-Rivet E Bourdon M Frangne N Cheniclet C Renaudin JP Gévaudant F Hernould M 《Annals of botany》2011,107(7):1159-1169