首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein degradation by the ubiquitin-proteasome system is necessary for a normal cell cycle. As compared with knowledge of the mechanism in animals and yeast, that in plants is less known. Here we summarize research into the regulatory mechanism of protein degradation in the cell cycle in plants. Anaphase-promoting complex/cyclosome (APC), in the E3 family of enzymes, plays an important role in maintaining normal mitosis. APC activation and substrate specificity is determined by its activators, which can recognize the destruction box (D-box) in APC target proteins. Oryza sativa root architecture-associated I (OsRAA1) with GTP-binding activity was originally cloned from rice. Overexpression of of OsRAA1 inhibits the growth of primary roots in rice. Knockdown lines showed reduced height of seedlings because of abnormal cell division. OsRAA1 transgenic rice and fission yeast show a higher proportion of metaphase cells than that of controls, which suggests a blocked transition from metaphase to anaphase during mitosis. OsRAA1 co-localizes with spindle tubulin. It contains the D-box motif and interacts with OsRPT4 of the regulatory particle of 26S proteasome. OsRAA1 may be a cell cycle inhibitor that can be degraded by the ubiquitin-proteasome system, and its disruption is necessary for the transition from metaphase to anaphase during root growth in rice.Key words: cell cycle, APC, RAA1, rice, protein degradationProtein degradation by the ubiquitin-proteasome system is necessary for the normal cell cycle. The activation of 3 enzymes, E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin ligase), are required for the addition of ubiquitin molecules to the target protein. E1 catalyzes the formation of the thiol-ester bond between C-terminal glycine in ubiquitin and cysteine in E1, and activated ubiquitin is transferred to a cysteine in E2. With the help of an E3, ubiquitin is linked to the lysine in the target protein. Subsequent ubiquitins can be attached to the previously bound ubiquitin because of the seven lysine residues in the ubiquitin molecule. Finally, the ubiquitinated substrates are degraded by the 26S proteasome.E3 confers substrate specificity. E3 ubiquitin ligases comprise a large and diverse family of proteins or protein complexes. E3s are of two classes: homology to E6-AP carboxy terminus-containing proteins, and RING-finger domain-containing proteins. The RING-finger E3s have 4 subgroups: single subunit RING E3, VCB-Cul2 complex (VBC), Skp1/Cullin/F-box protein (SCF) and anaphase-promoting complex/cyclosome (APC/C).1 The SCF ligases regulate the transition from G1/S and G2/M, and APC is required for mitosis. Many APC substrates have been identified in animals.2 The polyubiquitinated substrates can be recognized by different ubiquitin receptors and degraded via 26S proteasome.3,4 However, little is known about APC substrates in plants.  相似文献   

2.
Ge L  Chen H  Jiang JF  Zhao Y  Xu ML  Xu YY  Tan KH  Xu ZH  Chong K 《Plant physiology》2004,135(3):1502-1513
There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1::GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1::GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature.  相似文献   

3.
The inhibitory activity of Arabidopsis thaliana ICK1, a plant cyclin-dependent kinase inhibitor, has previously been characterised by its effect on plant cyclin-dependent kinase activity in vitro and its effect on growth in transgenic plants. Herein, we examine cyclin-dependent kinase-driven cell-cycle events, probed by testing the sensitivity of living cells to introduced ICK1 protein. The microinjection of ICK1 into individual Tradescantia virginiana stamen hair cells during late prophase and prometaphase resulted in a clear protein-specific increase in the metaphase transit time (time from nuclear envelope breakdown to the onset of anaphase) in a manner dependent on load and injection time. The results indicate a continuing role for cyclin-dependent kinases in mitotic progression and provide in vivo evidence at the cellular level that ICK1 can restrict growth in the plant by inhibiting cell division.  相似文献   

4.
A cDNA encoding a ubiquitin-conjugating enzyme designated UbcP4 in fission yeast was isolated. Disruption of its genomic gene revealed that it was essential for cell viability. In vivo depletion of the UbcP4 protein demonstrated that it was necessary for cell cycle progression at two phases, G2/M and metaphase/anaphase transitions. The G2 arrest of UbcP4-depleted cells was dependent upon chk1, which mediates checkpoint pathway. UbcP4-depleted cells arrested at metaphase had condensed chromosomes but were defective in separation. However, septum formation and cytokinesis were not restrained during the metaphase arrest. Overexpression of UbcP4 specifically rescued the growth defect of cut9ts cells at a restrictive temperature. cut9 encodes a component of the anaphase-promoting complex (APC) which is required for chromosome segregation at anaphase and moreover is defined as cyclin-specific ubiquitin ligase. Cdc13, a mitotic cyclin in fission yeast, was accumulated in the UbcP4-depleted cells. These results strongly suggested that UbcP4 is a ubiquitin-conjugating enzyme working in conjunction with APC and mediates the ubiquitin pathway for degradation of "sister chromatid holding protein(s)" at the onset of anaphase and possibly of mitotic cyclin at the exit of mitosis.  相似文献   

5.
6.
Salah SM  Nasmyth K 《Chromosoma》2000,109(1-2):27-34
Sister chromatid cohesion is established during DNA replication and depends on a multiprotein complex called cohesin. At the onset of anaphase the cohesive structures that hold sisters together must be destroyed to allow segregation of sisters. In the budding yeast Saccharomyces cerevisiae loss of sister chromatid cohesion depends on a separating protein (separin) called Esp1. At the metaphase to anaphase transition, separin is activated by proteolysis of its inhibitory subunit (securin) called Pds1. This process is mediated by the anaphase promoting complex and an accessory protein Cdc20. In meiosis a single round of DNA replication is followed by two successive rounds of segregation. Thus loss of cohesion is spun out over two divisions. By studying the mechanisms that initiate anaphase in meiotic division we show that the yeast securin Pds1p is present in meiotic nuclei and is destroyed at the onset of each meiotic division. We also show that securin destruction depends on Cdc20p which accumulates within nuclei around the time of Pds1p’s disappearance. Received: 1 December 1999; in revised form: 20 January 2000 / Accepted: 21 January 2000  相似文献   

7.
Cyclin-dependent kinases (CDKs) are involved in the control of cell cycle progression. Plant A-type CDKs are functional homologs of yeast Cdc2/Cdc28 and are expressed throughout the cell cycle. In contrast, B-type CDK (CDKB) is a family of mitotic CDKs expressed during the S/M phase, and its precise function remains unknown. Here, we identified two B2-type cyclins, CycB2;1 and CycB2;2, as a specific partner of rice CDKB2;1. The CDKB2;1-CycB2 complexes produced in insect cells showed a significant level of kinase activity in vitro, suggesting that CycB2 binds to and activates CDKB2. We then expressed green fluorescent protein (GFP)-fused CDKB2;1 and CycB2;2 in tobacco BY2 cells to investigate their subcellular localization during mitosis. Surprisingly, the fluorescence signal of CDKB2;1-GFP was tightly associated with chromosome alignment as well as with spindle structure during the metaphase. During the telophase, the signal was localized to the spindle midzone and the separating sister chromosomes, and then to the phragmoplast. On the other hand, the CycB2;2-GFP fluorescence signal was detected in nuclei during the interphase and prophase, moved to the metaphase chromosomes, and then disappeared completely after the cells passed through the metaphase. Co-localization of CDKB2;1-GFP and CycB2;2-GFP on chromosomes aligned at the center of the metaphase cells suggests that the CDKB2-CycB2 complex may function in retaining chromosomes at the metaphase plate. Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating that CycB2;2 promoted cell division probably through association with CDKB2 in the root meristem.  相似文献   

8.
Accurate and efficient separation of sister chromatids during anaphase is critical for faithful cell division. It has been proposed that cortical dynein–generated pulling forces on astral microtubules contribute to anaphase spindle elongation and chromosome separation. In mammalian cells, however, definitive evidence for the involvement of cortical dynein in chromosome separation is missing. It is believed that dynein is recruited and anchored at the cell cortex during mitosis by the α subunit of heterotrimeric G protein (Gα)/mammalian homologue of Drosophila Partner of Inscuteable/nuclear mitotic apparatus (NuMA) ternary complex. Here we uncover a Gα/LGN-independent lipid- and membrane-binding domain at the C-terminus of NuMA. We show that the membrane binding of NuMA is cell cycle regulated—it is inhibited during prophase and metaphase by cyclin-dependent kinase 1 (CDK1)–mediated phosphorylation and only occurs after anaphase onset when CDK1 activity is down-regulated. Further studies indicate that cell cycle–regulated membrane association of NuMA underlies anaphase-specific enhancement of cortical NuMA and dynein. By replacing endogenous NuMA with membrane-binding-deficient NuMA, we can specifically reduce the cortical accumulation of NuMA and dynein during anaphase and demonstrate that cortical NuMA and dynein contribute to efficient chromosome separation in mammalian cells.  相似文献   

9.
Bub1 (for budding uninhibited by benzimidazole 1), one of the main spindle checkpoint kinases, acts as a kinetochore scaffold for assembling other checkpoint proteins. Here, we identify a plant Bub1-related kinase 1 (BRK1) in rice (Oryza sativa). The brk1 mutants are sterile due to the precocious separation of sister chromatids at the onset of anaphase I. The centromeric recruitment of SHUGOSHIN1 and phosphorylation of histone H2A at Thr-134 (H2A-pT134) depend on BRK1. Although the homologs can faithfully separate from each other at the end of meiosis I, the uncorrected merotelic attachment of paired sister kinetochores at the early stage of metaphase I in brk1 reduces the tension across homologous kinetochores, causes the metaphase I spindle to be aberrantly shaped, and subsequently affects the synchronicity of homolog separation at the onset of anaphase I. In addition, the phosphorylation of inner centromeric histone H3 at Ser-10 (H3-pS10) during diakinesis depends on BRK1. Therefore, we speculate that BRK1 may be required for normal localization of Aurora kinase before the onset of metaphase I, which is responsible for correcting the merotelic attachment.  相似文献   

10.
Expansins are unique plant cell wall proteins that are involved in cell wall modifications underlying many plant developmental processes. In this work, we investigated the possible biological role of the root-specific α-expansin gene OsEXPA8 in rice growth and development by generating transgenic plants. Overexpression of OsEXPA8 in rice plants yielded pleiotropic phenotypes of improved root system architecture (longer primary roots, more lateral roots and root hairs), increased plant height, enhanced leaf number and enlarged leaf size. Further study indicated that the average cell length in both leaf and root vascular bundles was enhanced, and the cell growth in suspension cultures was increased, which revealed the cellular basis for OsEXPA8-mediated rice plant growth acceleration. Expansins are thought to be a key factor required for cell enlargement and wall loosening. Atomic force microscopy (AFM) technology revealed that average wall stiffness values for 35S::OsEXPA8 transgenic suspension-cultured cells decreased over six-fold compared to wild-type counterparts during different growth phases. Moreover, a prominent change in the wall polymer composition of suspension cells was observed, and Fourier-transform infrared (FTIR) spectra revealed a relative increase in the ratios of the polysaccharide/lignin content in cell wall compositions of OsEXPA8 overexpressors. These results support a role for expansins in cell expansion and plant growth.  相似文献   

11.
The late events of the budding yeast cell division cycle, cytokinesis and cell separation, require the assembly of a contractile actomyosin ring (CAR), primary and secondary septum formation followed by enzymatic degradation of the primary septum. Here we present evidence that demonstrates a role for the budding yeast amphiphysin complex, a heterodimer comprising Rvs167 and Rvs161, in CAR assembly and cell separation. The iqg1-1 allele is synthetically lethal with both rvs167 and rvs161 null mutations. We show that both Iqg1 and the amphiphysin complex are required for CAR assembly in early anaphase but cells are able to complete assembly in late anaphase when these activities are, respectively, either compromised or absent. Amphiphysin dependent CAR assembly is dependent upon the Rvs167 SH3 domain, but this function is insufficient to explain the observed synthetic lethality. Dosage suppression of the iqg1-1 allele demonstrates that endocytosis is required for the default cell separation pathway in the absence of CAR contraction but is unlikely to be required to maintain viability. The amphiphysin complex is required for normal, post-mitotic, localization of Chs3 and the Rho1 GEF, Rom2, which are responsible for secondary septum deposition and the accumulation of GTP bound Rho1 at the bud neck. It is concluded that a failure of polarity establishment in the absence of CAR contraction and amphiphysin function leads to loss of viability as a result of the consequent cell separation defect.  相似文献   

12.
Cdk1 drives both mitotic entry and the metaphase-to-anaphase transition. Past work has shown that Wee1 inhibition of Cdk1 blocks mitotic entry. Here we show that the budding yeast Wee1 kinase, Swe1, also restrains the metaphase-to-anaphase transition by preventing Cdk1 phosphorylation and activation of the mitotic form of the anaphase-promoting complex/cyclosome (APCCdc20). Deletion of SWE1 or its opposing phosphatase MIH1 (the budding yeast cdc25+) altered the timing of anaphase onset, and activation of the Swe1-dependent morphogenesis checkpoint or overexpression of Swe1 blocked cells in metaphase with reduced APC activity in vivo and in vitro. The morphogenesis checkpoint also depended on Cdc55, a regulatory subunit of protein phosphatase 2A (PP2A). cdc55Δ checkpoint defects were rescued by mutating 12 Cdk1 phosphorylation sites on the APC, demonstrating that the APC is a target of this checkpoint. These data suggest a model in which stepwise activation of Cdk1 and inhibition of PP2ACdc55 triggers anaphase onset.  相似文献   

13.
Kinetochore microtubules (kMts) are a subset of spindle microtubules that bind directly to the kinetochore to form the kinetochore fiber (K-fiber). The K-fiber in turn interacts with the kinetochore to produce chromosome motion toward the attached spindle pole. We have examined K-fiber maturation in PtK1 cells using same-cell video light microscopy/serial section EM. During congression, the kinetochore moving away from its spindle pole (i.e., the trailing kinetochore) and its leading, poleward moving sister both have variable numbers of kMts, but the trailing kinetochore always has at least twice as many kMts as the leading kinetochore. A comparison of Mt numbers on sister kinetochores of congressing chromosomes with their direction of motion, as well as distance from their associated spindle poles, reveals that the direction of motion is not determined by kMt number or total kMt length. The same result was observed for oscillating metaphase chromosomes. These data demonstrate that the tendency of a kinetochore to move poleward is not positively correlated with the kMt number. At late prometaphase, the average number of Mts on fully congressed kinetochores is 19.7 ± 6.7 (n = 94), at late metaphase 24.3 ± 4.9 (n = 62), and at early anaphase 27.8 ± 6.3 (n = 65). Differences between these distributions are statistically significant. The increased kMt number during early anaphase, relative to late metaphase, reflects the increased kMt stability at anaphase onset. Treatment of late metaphase cells with 1 μM taxol inhibits anaphase onset, but produces the same kMt distribution as in early anaphase: 28.7 ± 7.4 (n = 54). Thus, a full complement of kMts is not sufficient to induce anaphase onset. We also measured the time course for kMt acquisition and determined an initial rate of 1.9 kMts/min. This rate accelerates up to 10-fold during the course of K-fiber maturation, suggesting an increased concentration of Mt plus ends in the vicinity of the kinetochore at late metaphase and/or cooperativity for kMt acquisition.  相似文献   

14.
《Cellular signalling》2014,26(10):2217-2222
The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition.  相似文献   

15.
Anaphase, mitotic exit, and cytokinesis proceed in rapid succession, and while mitotic exit is a requirement for cytokinesis in yeast, it may not be a direct requirement for furrow initiation in animal cells. In this report, we physically manipulated the proximity of the mitotic apparatus (MA) to the cell cortex in combination with microinjection of effectors of the spindle checkpoint and CDK1 activity to determine how the initiation of cytokinesis is coupled to the onset of anaphase and mitotic exit. Whereas precocious contact between the MA and the cell surface advanced the onset of cytokinesis into early anaphase A, furrowing could not be advanced prior to the metaphase-anaphase transition. Additionally, while cells arrested in anaphase could be induced to initiate cleavage furrows, cells arrested in metaphase could not. Finally, activation of the mitotic checkpoint in one spindle of a binucleate cell failed to arrest cytokinesis induced by the control spindle but did inhibit the formation of furrows between the arrested MA and the control, nonarrested MA. Our experiments suggest that the competence of the mitotic apparatus to initiate cytokinesis is not dependent on cyclin degradation but does require anaphase-promoting complex (APC) activity and, thus, inactivation of the mitotic checkpoint.  相似文献   

16.
Cohesion between sister chromatids is essential for their bi-orientation on mitotic spindles. It is mediated by a multisubunit complex called cohesin. In yeast, proteolytic cleavage of cohesin's alpha kleisin subunit at the onset of anaphase removes cohesin from both centromeres and chromosome arms and thus triggers sister chromatid separation. In animal cells, most cohesin is removed from chromosome arms during prophase via a separase-independent pathway involving phosphorylation of its Scc3-SA1/2 subunits. Cohesin at centromeres is refractory to this process and persists until metaphase, whereupon its alpha kleisin subunit is cleaved by separase, which is thought to trigger anaphase. What protects centromeric cohesin from the prophase pathway? Potential candidates are proteins, known as shugoshins, that are homologous to Drosophila MEI-S332 and yeast Sgo1 proteins, which prevent removal of meiotic cohesin complexes from centromeres at the first meiotic division. A vertebrate shugoshin-like protein associates with centromeres during prophase and disappears at the onset of anaphase. Its depletion by RNA interference causes HeLa cells to arrest in mitosis. Most chromosomes bi-orient on a metaphase plate, but precocious loss of centromeric cohesin from chromosomes is accompanied by loss of all sister chromatid cohesion, the departure of individual chromatids from the metaphase plate, and a permanent cell cycle arrest, presumably due to activation of the spindle checkpoint. Remarkably, expression of a version of Scc3-SA2 whose mitotic phosphorylation sites have been mutated to alanine alleviates the precocious loss of sister chromatid cohesion and the mitotic arrest of cells lacking shugoshin. These data suggest that shugoshin prevents phosphorylation of cohesin's Scc3-SA2 subunit at centromeres during mitosis. This ensures that cohesin persists at centromeres until activation of separase causes cleavage of its alpha kleisin subunit. Centromeric cohesion is one of the hallmarks of mitotic chromosomes. Our results imply that it is not an intrinsically stable property, because it can easily be destroyed by mitotic kinases, which are kept in check by shugoshin.  相似文献   

17.

Objectives

To study cell cycle delay and metaphase arresting activity of leaf aqueous extract of Clerodendrum viscosum Vent. (LAECV) in root apical meristems and mouse bone marrow cells.

Materials and methods

Cell cycle delay and metaphase arresting activities of LAECV were analysed, in root apical meristems of onion and wheat, and in mouse bone marrow cells, by scoring mitotic index, metaphase frequency and transition of cells from metaphase to anaphase. Colchicine was used as the standard metaphase arresting drug. Phytochemicals present in LAECV were detected and their phytotoxic activity was evaluated by analysing green‐gram (Vigna radiata) seedling's root growth retardation and branch root swelling phenomenon.

Results

LAECV treatment resulted in dose‐dependent root growth retardation of green‐gram seedling root length (P < 0.01) and half maximal growth inhibitory concentration (IC50) of LAECV was 0.87 mg/ml at 144 h. In onion and wheat root meristem cells the mitotic index decreased, metaphase frequency increased and transition from metaphase to anaphase reduced. Experimentation with mouse bone marrow cells indicated that LAECV induced metaphase arrest (164.3% increase in arrested metaphases per 300 mg/kg body weight, over 2.5 h). Phytochemicals like carbohydrates, glycosides, saponins, terpenoids, triterpenoids, tannins and trace amounts of alkaloids were detected in LAECV.

Conclusion

It may be said that LAECV contains mitostatic and metaphase arresting components that are able to induce significant metaphase arrest in root apical meristems and also in mouse bone marrow cells.
  相似文献   

18.
Summary Cell cycle parameters were studied inCaesalpinia peltophoroides meristems proliferating under different oxygen tensions. This species has been selected for mixed planting in degraded areas in Brazil, some of which are occasionally flooded. As the species’ adaptation to oxygen deprivation during flooding is not fully understood, the objective of this study was to characterize the meristematic activity of root cells under various oxygen regimes. Synchronous binucleate cells, induced by a pulse of caffeine, showed a cell-cycle time constant under both control (5.6 mg of O2 per l) and oxygenated conditions (7.9 and 3.2 mg of O2 per l). The whole cell cycle lasted 10 h, although the relative duration of metaphase and anaphase/early telophase increased in more hypoxic conditions. The species appeared to utilise oxygen diffusing from the shoot to the root system to maintain cell division and root growth.  相似文献   

19.
Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses.  相似文献   

20.
A checkpoint mechanism operates at the metaphase/anaphase transition to ensure that a bipolar spindle is formed and that all the chromosomes are aligned at the spindle equator before anaphase is initiated. Since mistakes in the segregation of chromosomes during meiosis have particularly disastrous consequences, it seems likely that the meiotic cell division would be characterized by a stringent metaphase/ anaphase checkpoint. To determine if the presence of an unaligned chromosome activates the checkpoint and delays anaphase onset during mammalian female meiosis, we investigated meiotic cell cycle progression in murine oocytes from XO females and control siblings. Despite the fact that the X chromosome failed to align at metaphase in a significant proportion of cells, we were unable to detect a delay in anaphase onset. Based on studies of cell cycle kinetics, the behavior and segregation of the X chromosome, and the aberrant behavior and segregation of autosomal chromosomes in oocytes from XO females, we conclude that mammalian female meiosis lacks chromosome-mediated checkpoint control. The lack of this control mechanism provides a biological explanation for the high incidence of meiotic nondisjunction in the human female. Furthermore, since available evidence suggests that a stringent checkpoint mechanism operates during male meiosis, the lack of a comparable checkpoint in females provides a reason for the difference in the error rate between oogenesis and spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号