首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Albers-Post model, occlusion of K(+) in the E(2) conformer of the enzyme (E) is an obligatory step of Na(+)/K(+)-ATPase reaction. If this were so the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) should be equal to the rate constant for deocclusion. We tested this prediction in a partially purified Na(+)/K(+)-ATPase from pig kidney by means of rapid filtration to measure the occlusion using the K(+) congener Rb(+). Assuming that always two Rb(+) are occluded per enzyme, the steady-state levels of occluded forms and the kinetics of deocclusion were adequately described by the Albers-Post model over a very wide range of [ATP] and [Rb(+)]. The same happened with the kinetics of ATP hydrolysis. However, the value of the parameters that gave best fit differed from those for occlusion in such a way that the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) became much larger than the rate constant for deocclusion when [Rb(+)] <10 mM. This points to the presence of an extra ATP hydrolysis that is not Na(+)-ATPase activity and that does not involve occlusion. A possible way of explaining this is to posit that the binding of a single Rb(+) increases ATP hydrolysis without occlusion.  相似文献   

2.
We used the direct route of occlusion to study the equilibrium between free and occluded Rb(+) in the Na(+)/K(+)-ATPase, in media with different concentrations of ATP, Mg(2+), or Na(+). An empirical equation, with the restrictions imposed by the stoichiometry of ligand binding was fitted to the data. This allowed us to identify which states of the enzyme were present in each condition and to work out the schemes and equations that describe the equilibria between the ATPase, Rb(+), and ATP, Mg(2+), or Na(+). These equations were fitted to the corresponding experimental data to find out the values of the equilibrium constants of the reactions connecting the different enzyme states. The three ligands decreased the apparent affinity for Rb(+) occlusion without affecting the occlusion capacity. With [ATP] tending to infinity, enzyme species with one or two occluded Rb(+) seem to be present and full occlusion seems to occur in enzymes saturated with the nucleotide. In contrast, when either [Mg(2+)] or [Na(+)] tended to infinity no occlusion was detectable. Both Mg(2+) and Na(+) are displaced by Rb(+) through a process that seems to need the binding and occlusion of two Rb(+), which suggests that in these conditions Rb(+) occlusion regains the stoichiometry of the physiological operation of the Na(+) pump.  相似文献   

3.
Occlusion of K (+) in the Na (+)/K (+)-ATPase can be achieved under two conditions: during hydrolysis of ATP, in media with Na (+) and Mg (2+), after the K (+)-stimulated dephosphorylation of E2P (physiological route) or spontaneously, after binding of K (+) to the enzyme (direct route). We investigated the sidedness of spontaneous occlusion and deocclusion of Rb (+) in an unsided, purified preparation of Na (+)/K (+)-ATPase. Our studies were based on two propositions: (i) in the absence of ATP, deocclusion of K (+) and its congeners is a sequential process where two ions are released according to a single file mechanism, both in the absence and in the presence of Mg (2+) plus inorganic orthophosphate (Pi), and (ii) in the presence of Mg (2+) plus Pi, exchange of K (+) would take place through sites exposed to the extracellular surface of the membrane. The experiments included a double incubation sequence where one of the two Rb (+) ions was labeled as (86)Rb (+). We found that, when the enzyme is in the E2 conformation, the first Rb (+) that entered the enzyme in media without Mg (2+) and Pi was the last to leave after addition of Mg (2+) plus Pi, and vice-versa. This indicates that spontaneous exchange of Rb (+) between E2(Rb 2) and the medium takes place when the transport sites are exposed to the extracellular surface of the membrane. Our results open the question if occlusion and deocclusion via the direct route participates in any significant degree in the transport of K (+) during the ATPase activity.  相似文献   

4.
We report a study on the effect of the fluorescent probe eosin on some of the reactions involved in the conformational transitions that lead to the occlusion of the K(+)-congener Rb(+) in the Na(+)/K(+)-ATPase. Eosin decreases the equilibrium levels of occluded Rb(+), this effect being fully attributable to a decrease in the apparent affinity of the enzyme for Rb(+) since the capacity for occlusion remains independent of eosin concentration. The results can be quantitatively described by a model that assumes that two molecules of eosin are able to bind to the Na(+)/K(+)-ATPase, both to the Rb(+)-free and to the Rb(+)-occluded enzyme regardless of the degree of cation occlusion. Concerning the effect on the affinity for Rb(+) occlusion, transient state experiments show that eosin reduces the initial velocity of occlusion, and that, like ATP, it increases the velocity of deocclusion of Rb(+). Interactions between eosin and ATP on Rb(+)-release experiments seem to indicate that eosin binds to the low-affinity site of ATP from which it exerts effects that are similar to those of the nucleotide.  相似文献   

5.
This work presents a detailed kinetic study that shows the coupling between the E2→E1 transition and Rb(+) deocclusion stimulated by Na(+) in pig-kidney purified Na,K-ATPase. Using rapid mixing techniques, we measured in parallel experiments the decrease in concentration of occluded Rb(+) and the increase in eosin fluorescence (the formation of E1) as a function of time. The E2→E1 transition and Rb(+) deocclusion are described by the sum of two exponential functions with equal amplitudes, whose rate coefficients decreased with increasing [Rb(+)]. The rate coefficient values of the E2→E1 transition were very similar to those of Rb(+)-deocclusion, indicating that both processes are simultaneous. Our results suggest that, when ATP is absent, the mechanism of Na(+)-stimulated Rb(+) deocclusion would require the release of at least one Rb(+) ion through the extracellular access prior to the E2→E1 transition. Using vanadate to stabilize E2, we measured occluded Rb(+) in equilibrium conditions. Results show that, while Mg(2+) decreases the affinity for Rb(+), addition of vanadate offsets this effect, increasing the affinity for Rb(+). In transient experiments, we investigated the exchange of Rb(+) between the E2-vanadate complex and the medium. Results show that, in the absence of ATP, vanadate prevents the E2→E1 transition caused by Na(+) without significantly affecting the rate of Rb(+) deocclusion. On the other hand, we found the first evidence of a very low rate of Rb(+) occlusion in the enzyme-vanadate complex, suggesting that this complex would require a change to an open conformation in order to bind and occlude Rb(+).  相似文献   

6.
We used suspensions of partially purified Na(+)/K(+)-ATPase from pig kidney to compare the effects of Rb(+), as a K(+) congener, on the time course and on the equilibrium values of eosin fluorescence and of Rb(+) occlusion. Both sets of data were collected under identical conditions in the same enzyme preparations. The incubation media lacked ATP so that all changes led to an equilibrium distribution between enzyme conformers with and without bound eosin and with and without bound or occluded Rb(+). Results showed that as Rb(+) concentration was increased, the equilibrium value of fluorescence decreased and occlusion increased along rectangular hyperbolas with similar half-maximal values. The time courses of attainment of equilibrium showed an initial phase which was so quick as to fall below the time resolution of our rapid-mixing apparatus. This phase was followed by the sum of at least two exponential functions of time. In the case of fluorescence the fast exponential term accounted for a larger fraction of the time course than in the case of occlusion. Comparison between experimental and simulated results suggests that fluorescence changes express a process that is coupled to Rb(+) occlusion but that is completed before occlusion reaches equilibrium.  相似文献   

7.
We have measured the time course of release of 42K and 86Rb from an occluded state of the Na,K-pump using a rapid filtration apparatus. We have found that at 20 degrees C and in the presence of ATP, 42K is released with a rate constant of approximately 45 s-1 and 86Rb with a rate constant of approximately 20 s-1; both ATP and ADP are effective at a low affinity site (Kd approximately 0.3 and 1 mM, respectively) with the rate of deocclusion being only half as great in ADP as in ATP. Mg2+ stimulates 2-fold at low concentrations probably by forming MgATP, and free Mg2+ is strongly inhibitory at high concentrations (Kd approximately 10 mM). Mg2+ also decreases the affinity for ATP, and the data are consistent with mixed type inhibition; from the analysis the dissociation constant is approximately 1 mM for the inhibitory Mg2+ and the Rb+-occluded form without ATP. The rate of 42K or 86Rb release increases monotonically with pH while ATPase activity decreases above pH 8, so that deocclusion is not rate-limiting in the overall cycle at high pH. This is reflected by a convergence of the rate of Na,K-ATPase and Na,Rb-ATPase activities at high pH and by a decrease in the observed steady-state level of the occluded 86Rb intermediate at high pH. K+, Rb+, Na+, and Cs+, but not Li+, increase the rate of 42K and 86Rb release at constant ionic strength, presumably at sites other than the transport sites. The spontaneous rate of deocclusion is only approximately 0.1 s-1 at low ionic strength in the absence of nucleotides, and it is increased markedly by all cations tested except Li+. Overall the data are consistent with deocclusion as a rate-limiting step in the Na,K-pump cycle.  相似文献   

8.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

9.
We have studied the effect of various amines on the rate of release of 86Rb from the occluded state of dog kidney Na,K-ATPase formed by pre-incubation of the enzyme with 86Rb. In the presence of MgPi, various amines act like K+ or Rb+ in blocking the release of 86Rb from one of two sites for occlusion (the "s" site). Of 38 amines tested, tetrapropylamine and various benzyl amines exhibit the highest affinity; the K1/2 for these compounds is 2-5 mM. In the presence of ATP, when 86Rb is presumably released towards the intracellular face of the pump in the normal mode of operation, 86Rb release is blocked by the presence of amine, but only if the amine is also included in a preincubation with MgPi. The data are consistent with a model in which the interaction of amine with one of the transport sites (the "f" site) prevents the E2----E1 transformation that is stimulated by ATP. When 86Rb deocclusion from the f site has occurred in the presence of amine, the lone 86Rb at the s site can be released in the presence of ATP if the amine is removed from the medium. This suggests that a single 86Rb ion at the s site can be released to the intracellular face of the membrane, and therefore that transport can occur with only one K+ site occupied. The amine that blocks release of one 86Rb ion does not itself become occluded: (a) The interaction of amine and ATP is only seen when both ligands are present in the medium; (b) the effects of amines are not "remembered" after a brief exposure to a rinse medium; (c) with the vanadate-inhibited enzyme, benzyltriethylamine and tetrapropylamine are only weakly effective in blocking 86Rb release from the s site; and (d) organic cations exhibit very low affinity in competition with 86Rb for occlusion at equilibrium. Thus the results are consistent with the idea that monofunctional amines block by binding to the f site but that, unlike K+ and Rb+, they do not become occluded. In contrast, at equilibrium ethylenediamine prevents 86Rb occlusion in a competitive manner, suggesting the possibility of occlusion of the bifunctional amine.  相似文献   

10.
Palytoxin (PTX) inhibits the (Na(+) + K+)-driven pump and simultaneously opens channels that are equally permeable to Na+ and K+ in red cells and other cell membranes. In an effort to understand the mechanism by which PTX induces these fluxes, we have studied the effects of PTX on: 1) K+ and Na+ occlusion by the pump protein; 2) phosphorylation and dephosphorylation of the enzyme when a phosphoenzyme is formed from ATP and from P(i); and 3) p-nitro phenyl phosphatase (p-NPPase) activity associated with the (Na+, K+)-ATPase. We have found that palytoxin 1) increases the rate of deocclusion of K+(Rb+) in a time- and concentration-dependent manner, whereas Na+ occluded in the presence of oligomycin is unaffected by the toxin; 2) makes phosphorylation from P(i) insensitive to K+, and 3) stimulates the p-NPPase activity. The results are consistent with the notion that PTX produces a conformation of the Na+, K(+)-pump that resembles the one observed when ATP is bound to its low-affinity binding site. Further, they suggest that the channels that are formed by PTX might arise as a consequence of a perturbation in the ATPase structure, leading to the loss of control of the outside "gate" of the enzyme and hence to an uncoupling of the ion transport from the catalytic function of the ATPase.  相似文献   

11.
Based on the following observations we propose that the cytoplasmic loop between trans-membrane segments M6 and M7 (L6/7) of the alpha subunit of Na(+),K(+)-ATPase acts as an entrance port for Na(+) and K(+) ions. 1) In defined conditions chymotrypsin specifically cleaves L6/7 in the M5/M6 fragment of 19-kDa membranes, produced by extensive proteolysis of Na(+),K(+)-ATPase, and in parallel inactivates Rb(+) occlusion. 2) Dissociation of the M5/M6 fragment from 19-kDa membranes is prevented either by occluded cations or by competitive antagonists such as Ca(2+), Mg(2+), La(3+), p-xylylene bisguanidinium and m-xylylene bisguanidinium, or 1-bromo-2,4, 6-tris(methylisothiouronium)benzene and 1,3-dibromo-2,4,6-tris (methylisothiouronium)benzene (Br(2)-TITU(3+)). 3) Ca(2+) ions raise electrophoretic mobility of the M5/M6 fragment but not that of the other fragments of the alpha subunit. It appears that negatively charged residues in L6/7 recognize either Na(+) or K(+) ions or the competitive cation antagonists. Na(+) and K(+) ions are then occluded within trans-membrane segments and can be transported, whereas the cation antagonists are not occluded and block transport at the entrance port. The cytoplasmic segment of the beta subunit appears to be close to or contributes to the entrance port, as inferred from the following observations. 1) Specific chymotryptic cleavage of the 16-kDa fragment of the beta subunit to 15-kDa at 20 degrees C (Shainskaya, A., and Karlish, S. J. D. (1996) J. Biol. Chem. 271, 10309-10316) markedly reduces affinity for Br(2)-TITU(3+) and for Na(+) ions, detected by Na(+) occlusion assays or electrogenic Na(+) binding, whereas Rb(+) occlusion is unchanged. 2) Na(+) ions specifically protect the 16-kDa fragment against this chymotryptic cleavage.  相似文献   

12.
The rate of 86Rb or 42K release from an occluded form of the phosphorylated Na+ pump has been studied using a rapid filtration apparatus described previously. The rate constant of release is 5-15 s-1, and 42K and 86Rb dissociate at approximately the same rate. Mg2+ is required for deocclusion in the presence of Pi at a site which has the same affinity as the site involved in stabilization of E2(K) with ATP; we propose that Na,K-ATPase has only one site for Mg2+ (apart from Mg2+ complexed with ATP), that the affinity of this site for Mg2+ is increased by Pi binding and decreased by ATP binding, and that Mg2+ is bound and released in the normal transport cycle. In the presence of K+, Cs+, Rb+, or Tl+, the release of two distinct 86Rb ions can be observed, the slow release from one site ("s" site) being blocked by occupancy of the site vacated by the other ("f", fast site). By a sequence of incubations, labeled 86Rb can be placed at either site, and the rate of dissociation monitored individually; in the absence of K+, dissociation from the s site proceeds after a lag in which the f site is vacated. The results are consistent with a "flickering-gate" model of deocclusion to the extracellular pump face, in which the site is exposed to the medium only long enough for a single ion to be released. When deocclusion to the intracellular face is promoted with ATP, ions are released from both sites at the same rate, presumably because the E2----E1 conformational change is rate-limiting. Unlabeled ions co-occluded with 86Rb increase the ATP-stimulated rate of release in the order Rb+ less than Tl+ less than Cs+ less than K+; since the same rank order is observed when dissociation from the s site is monitored in the presence of these ions and MgPi we propose that the latter process proceeds toward the intracellular pump face. 86Rb release from the vanadate-inhibited enzyme has the characteristics of Pi-stimulated release but is approximately 25-fold slower. ATP binds to both the phosphorylated and vanadate-inhibited forms of Na,K-ATPase and increases the rate of deocclusion, apparently to both the intracellular and extracellular faces of the pump.  相似文献   

13.
A hydrophobic amine, (Z)-5-methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine (AU-1421), was examined as a probe of the K+ occlusion center of Na+/K(+)-ATPase. Treatment of the enzyme with AU-1421 at 37 degrees C and pH 7.0 produced irreversible inactivation of the enzyme. This inactivation was prevented, with simple competitive kinetics, by K+ or its congeners in the order of Tl+ greater than Rb+ greater than NH+4 greater than Cs+. The concentrations of these cations required for the protection, were consistent with the affinities for transport and ATPase activity. The apparent binding constant for K+ was calculated to be 0.03 mM, from the competition with AU-1421. This protection was cancelled by a high concentration of ATP or ADP. A high concentration of Na+ (Kd = 6.5-6.9 mM), as a substitute for K+, also prevented the inactivation by AU-1421. Thus, the enzyme was protected from AU-1421 when the occlusion center was occupied by a monovalent cation, irrespective of the enzyme conformation, E1 (Na(+)-bound form) or E2 (K(+)-bound form). On the other hand, the enzyme was most sensitive to AU-1421 in the presence of low concentration of Na+ (0.4-0.8 mM) or a high concentration of ATP. Tris, imidazole or choline, which favors the E1 state, also accelerated the inactivation by AU-1421. These suggest that AU-1421 reacts with the occlusion center through the E1 state.  相似文献   

14.
Two molecular forms of the (Na+,K+)-ATPase catalytic subunit have been identified in rat adipocyte plasma membranes using immunological techniques. The similarity between these two forms and those in brain (Sweadner, K. J. (1979) J. Biol. Chem. 254, 6060-6067) led us to use the same nomenclature: alpha and alpha(+). The K0.5 values of each form for ouabain (determined by inhibition of phosphorylation of the enzyme from [gamma-32P]ATP) were 3 X 10(-7)M for alpha(+) and 1 X 10(-5)M for alpha. These numbers correlate well with the K0.5 values for the two ouabain-inhibitable components of 86Rb+/K+ pumping in intact cells (1 X 10(-7) M and 4 X 10(-5)M). Quantitation of the Na+ pumps in plasma membranes demonstrated a total of 11.5 +/- 0.2 pmol/mg of membrane protein, of which 8.5 +/- 0.3 pmol/mg, or 75%, was alpha(+). Insulin stimulation of 86Rb+/K+ uptake in rat adipocytes was abolished by ouabain at a concentration sufficient to inhibit only alpha(+)(2-5 X 10(-6)M). Immunological techniques and ouabain inhibition of catalytic labeling of the enzyme from [gamma-32P]ATP demonstrated that alpha(+) was present in skeletal muscle membranes as well as in adipocyte membranes, but was absent from liver membranes. Since insulin stimulates increased Na+ pump activity in adipose and muscle tissue but not in liver, there is a correlation between hormonal regulation of (Na+,K+)-ATPase and the presence of alpha(+). We propose that alpha(+) is the hormonally-sensitive version of the enzyme.  相似文献   

15.
We have previously demonstrated that Na+,K(+)-ATPase can be phosphorylated by 100 microM ATP and 5 mM Mg2+ and in the absence of Na+, provided that 40% dimethylsulfoxide (Me2SO) is present. Phosphorylation was stimulated by K+ up to a steady-state level of about 50% of Etot (Barrabin et al. (1990) Biochim. Biophys. Acta 1023, 266-273). Here we describe the time-course of phosphointermediate (EP) formation and of dephosphorylation of EP at concentrations of Mg2+ from 0.1 to 5000 microM and of K+ from 0.01 to 100 mM. The results were simulated by a simplified version of the commonly accepted Albers-Post model, i.e. a 3-step reaction scheme with a phosphorylation, a dephosphorylation and an isomerization/deocclusion step. Furthermore it was necessary to include an a priori, Mg(2+)- and K(+)-independent, equilibration between two enzyme forms, only one of which (constituting 14% of Etot) reacted directly with ATP. The role of Mg(2+) was two-fold: At low Mg2+, phosphorylation was stimulated by Mg2+ due to formation of the substrate MgATP, whereas at higher concentrations it acted as an inhibitor at all three steps. The affinity for the inhibitory Mg(2+)-binding was increased several-fold, relative to that in aqueous media, by dimethylsulfoxide. K+ stimulated dephosphorylation at all Mg(2+)-concentrations, but at high, inhibitory [Mg2+], K+ also stimulated the phosphorylation reaction, increasing both the rate coefficient and the steady-state level of EP. Generally, the presence of Me2SO seems to inhibit the dephosphorylation step, the isomerization/deocclusion step, and to a lesser extent (if at all) the phosphorylation reaction, and we discuss whether this reflects that Me2SO stabilizes occluded conformations of the enzyme even in the absence of monovalent cations. The results confirm and elucidate the stimulating effect of K+ on EP formation from ATP in the absence of Na+, but they leave open the question of the molecular mechanism by which Me2SO, inhibitory Mg2+ and stimulating K+ interact with the Na+,K(+)-ATPase.  相似文献   

16.
This paper describes properties of a simple manual assay for Rb+ occlusion on renal (Na+ + K+)-ATPase. Rb+ occlusion is measured by applying the enzyme plus Rb+ (86Rb) mixture to a Dowex-50 cation exchange column at 0 degree C, and eluting the enzyme with occluded Rb+ using an ice-cold sucrose solution. The enzyme-Rb+ complex is quite stable at 0 degree C. This method is useful for measuring Rb+ occlusion under equilibrium binding conditions and slow rates of dissociation of the enzyme-Rb+ complex. The stoichiometry of Rb+ occluded per phosphorylation site is 2. Rb+ saturation curves are strictly hyperbolic, suggesting that the two Rb+ sites have very different affinities, one in the micromolar range and one in the tens of millimolar range. ATP shifts the Rb+ saturation curves to the right (control K0.5 100-200 microM; plus ATP, K0.5 0.8-1.4 mM, in a 100 mM Tris-HCl medium, pH 7.0) and reduces the maximal level occluded (control approx. 4 nmol/mg; plus ATP approx. 3 nmol/mg protein). Thus, as expected, ATP shifts the E(1)2Rb+-E2(2Rb+)occ equilibrium towards E1. Sodium ions at concentrations of up to 30 mM compete with the rubidium ions, KNa = 1.86 mM in the Tris-HCl medium. Na+ at higher concentrations (30-100 mM) has an added non-competitive antagonistic effect. At room temperature, Rb+ dissociates slowly from the enzyme, kobs = 0.08 s-1, in the presence of either Rb+ (20 mM) or Na, (100 mM). As expected, dissociation is greatly accelerated by ATP, the rate being to fast to be measured by this technique. (Na+ + K+)-ATPase proteolyzed selectively by chymotrypsin in a Na+ medium, occludes Rb+. For control and proteolyzed (Na+ + K+)-ATPase the Rb+ saturation curves are similar and the rates of dissociation of the enzyme-Rb+ complex are identical. The chymotryptic split appears to disrupt antagonistic interactions between cation and ATP binding domains, while the E1-E2 conformational transition of the unphosphorylated protein probably remains.  相似文献   

17.
The kinetic properties of the rat liver microsomal ATPase, with respect to Na(+), K(+) and AT P requirements were examined. Presence of Na(+) and K(+), or both hardly caused any stimulation of the enzyme activity. The Km values for Na(+) and K(+) were substantially low (0.32 and 0.05 mM, respectively), compared to those reported for the Na(+), K(+) ATPasesfrom different tissues. Substrate kinetics studies revealed that in the absence of Na(+) and K(+), ATP is an activator of the enzyme. The enzyme displayed increased activity with increase in the energy of activation in the absence of Na(+) and K(+). The activity was partially inhibited by ouabain only in the presence of Na(+) and K(+). The results suggest that the liver microsomal enzyme is not a Na(+), K(+) ATPase, but has requirement of monovalent cations for the regulation of its activity. Also, the beta3 subunit of the enzyme has a Km lowering effect.  相似文献   

18.
Investigation of the properties of Ca2(+)-ATPase of sarcoplasmic reticulum cross-linked at the active site with glutaraldehyde showed that ATP binding affinity and rate of ATP-dependent phosphorylation and Ca2+ occlusion were decreased 2-3 orders of magnitude compared with the native enzyme. Cross-linkage had little effect on or marginally increased the rate of acetyl phosphate- and p-nitrophenyl phosphate-supported Ca2+ occlusion. Ca2+ binding or Ca2(+)-induced changes in tryptophan fluorescence were unaffected. High levels of phosphoenzyme (up to 4 nmol/mg of protein) were obtained, with 2 mol of Ca2+ occluded/mol of E-P. Dephosphorylation and deocclusion occurred together at a slow rate (k = 0.01 s-1) and were stimulated in a monophasic manner up to 20-fold by ADP. Cross-linking inhibited E2-P formation from Pi in 30% (v/v) dimethyl sulfoxide by more than 95%. Induction of turnover of the native ATPase, under conditions designed to yield high steady state levels of E1 approximately P(2Ca), results in a 3-4-fold increase in reactivity of active site residues to glutaraldehyde. The results show that cross-linkage sterically impairs nucleotide binding, changing ATP and ADP into relatively poor substrates, slowing nucleotide-dependent phosphoryl transfer and Ca2+ occlusion and deocclusion. The forward reaction with smaller substrates is unaffected. Another major effect of the cross-link is to inhibit E2-P formation, causing accumulation of E1 approximately P(2Ca) during enzyme turnover and preventing phosphorylation by Pi in the reverse direction. We suggest that occlusion and deocclusion of cations at the transport site of the native enzyme are linked to a two-step cleft closure movement at the active site and that the crosslink stabilizes occluded forms of the pump because it blocks part of this tertiary structural change. The latter could normally be propagated through linking helices to the distal side of the pump to destabilize the cations and open the transport sites to the lumen.  相似文献   

19.
Na(+) was required for the aerobic growth of Salmonella typhimurium on citrate, but not on l-malate, glucose, or glycerol. The maximal growth rate and the maximal total growth occurred with 6 to 7 mm Na(+). Na(+) could not be replaced by K(+), NH(4) (+), Li(+), Rb(+), or Cs(+). Sonically treated extracts of citrate-grown cells contained the enzymes of the citrate fermentation pathway (citritase and oxalacetate decarboxylase) and all of the enzymes of the citric acid cycle. Thus, two separate routes of citrate catabolism appeared to be operational in the cells. Two discrete oxalacetate (OAA) decarboxylases were also demonstrated. One was of the "classic" type, being activated by Mn(++) and inhibited by ethylenediaminetetracetate (EDTA). It was present in the cell sap. The second decarboxylase closely resembled the Na(+)-activated OAA decarboxylase of citrate-grown Aerobacter aerogenes, whose growth also requires, or is increased, by Na(+). This decarboxylase was EDTA-insensitive, specifically activated by Na(+) and inhibited by avidin, and it had a high affinity for OAA. It was induced by growth on citrate, but not l-malate or glycerol. It is suggested that the Na(+) requirement for growth reflects the need to activate this OAA decarboxylase as a component of the citrate fermentation pathway and that citrate catabolism via the citric acid cycle, which should be independent of Na(+), is somehow dependent upon the activity of the Na(+)-activated enzyme.  相似文献   

20.
J M Argüello  J H Kaplan 《Biochemistry》1990,29(24):5775-5782
Treatment of renal Na,K-ATPase with N-acetylimidazole (NAI) results in loss of Na,K-ATPase activity. The inactivation kinetics can be described by a model in which two classes of sites are acetylated by NAI. The class I sites are rapidly reacting, the acetylation is prevented by the presence of ATP (K0.5 congruent to 8 microM), and the inactivation is reversed by incubation with hydroxylamine. These data suggest that the class I sites are tyrosine residues at the ATP binding site. The second class of sites are more slowly reacting, not protected by ATP, nor reversed by hydroxylamine treatment. These are probably lysine residues elsewhere in the protein. The associated K-stimulated p-nitrophenylphosphatase activity is inactivated by acetylation of the class II sites only; thus the tyrosine residues associated with ATP binding to the catalytic center are not essential for phosphatase activity. Inactivated enzyme no longer has high-affinity ATP binding associated with the catalytic site, although low-affinity ATP effects (inhibition of phosphatase and deocclusion of Rb) are still present. The inactivated enzyme can still be phosphorylated by Pi, occlude Rb+ ions, and undergo the major conformational transitions between the E1 Na and E2 K forms of the enzyme. Thus acetylation of the Na,K-ATPase by NAI inhibits high-affinity ATP binding to the catalytic center and produces inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号