首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Nakatsuka  S Hanada  T Fujii 《Teratology》1983,28(2):243-247
A previous study demonstrated that caffeine strongly potentiated the teratogenic action of mitomycin C in mice. In the present study the effect of methylxanthines including caffeine, theophylline, theobromine (theobromine sodium salicylate), paraxanthine, and 1-methylxanthine was compared in order to analyze the structure-activity relationship. Jcl:ICR mice were injected IP with 3 mg/kg of mitomycin C, immediately followed by SC injection of each methylxanthine on day 11 of gestation. The doses of methylxanthines were calculated so that the mice received 50 mg/kg of caffeine or the equimolecular amount of the other methylxanthines. Fetuses were examined for external malformations on day 18 of gestation. Mitomycin C at 3 mg/kg and the methylxanthines at the doses used were not teratogenic. Combined administration of caffeine or theophylline with mitomycin C produced more than 80% of malformed fetuses. Although less effective than caffeine or theophylline, paraxanthine also significantly increased the incidence of malformed fetuses. Theobromine and 1-methylxanthine were virtually ineffective. From these findings, it is suggested that the methyl group at N-1 position of the xanthines is important for the enhancement but the N-1 methylation alone is ineffective unless accompanied with the substitution of the methyl moiety at the other position(s).  相似文献   

2.
Caffeine as well as the antiasthmatic drug theophylline can cause seizures when administered to humans or animals in excessive doses. Studies on rats have shown rapid development of functional tolerance to caffeine-induced seizures whereas repeated pretreatment with theophylline had no significant effect on the theophylline concentrations required to produce seizures. The purpose of this investigation was to determine whether chronic exposure to caffeine can affect susceptibility to the convulsant effect of theophylline. Rats received caffeine, 40 mg/kg, or solvent twice a day for 7 days as an intravenous injection. On the eighth day, theophylline was infused intravenously until the onset of maximal seizures. At this pharmacologic end point, rats pretreated with caffeine had significantly higher theophylline concentrations in the brain and cerebrospinal fluid than did control (solvent-pretreated) animals. Although the concentration differences were relatively small (approximately 11%), they demonstrate in principle the development of caffeine-induced tolerance to the neurotoxic effect of theophylline. Additional experiments showed that the caffeine effect on theophylline neurotoxicity is not acutely mediated by paraxanthine, a major metabolite of caffeine.  相似文献   

3.
Rats were trained to discriminate methylxanthines from saline under a two-lever concurrent variable ratio schedule of reinforcement. One group was trained to discriminate between saline and 32 mg/kg caffeine. A second group was trained to discriminate between 56 mg/kg theophylline and saline. Rats reliably discriminated between saline and the training methylxanthine, displaying graded generalization curves across training-drug doses. Caffeine-trained rats demonstrated caffeine-appropriate responding when tested with theophylline, paraxanthine, and 3-methylxanthine. Theobromine failed to generalize to the caffeine cue at test doses up to 75 g/kg. In contrast to the caffeine group, rats trained to discriminate theophylline from saline were less sensitive (higher ED50) to the effects of caffeine and paraxanthine test doses. Only partial generalization to the theophylline cue occured at paraxanthine doses up to 100 mg/kg. Based upon these data, it is suggested that the underlying substrate(s) for the caffeine cue is in some respects different from the substrate(s) for the theophylline cue.  相似文献   

4.
T Fujii  T Nakatsuka 《Teratology》1983,28(1):29-33
Teratogenic to subteratogenic doses of x-ray, mitomycin C, MNNG, thio-TEPA, cyclophosphamide, and chlorambucil were administered to pregnant ICR mice together with caffeine at doses of 12.5, 25, or 50 mg/kg on day 11 of gestation. Fetuses were examined for gross malformations on day 18 of gestation. The teratogenicity of mitomycin C was significantly potentiated by caffeine at a dose as low as 12.5 mg/kg. The teratogenicity of chlorambucil was also significantly potentiated by caffeine at 50 mg/kg, but similar potentiation was not observed for x-ray, MNNG, thio-TEPA, and cyclophosphamide.  相似文献   

5.
Embryotoxicity and teratogenicity of 5-fluorouracil (5-FU) and modulation of its effect by the depletors of glutathione (GSH) were evaluated in mice. Pregnant ICR mice were intraperitoneally (i.p.) injected with 25 mg/kg of 5-FU on day 11 of gestation (vaginal plug = day 0). Mice were pretreated i.p. with 250 mg/kg of phorone, a GSH depleting agent and/or 200 mg/kg of buthionine sulfoximine (BSO, an inhibitor of GSH biosynthesis) 4 hours before dosing with 5-FU. Dams were killed on day 17 of gestation. Fetuses were examined for external malformations, especially limb malformations. Pretreatment with phorone or BSO decreased fetal weight and increased the frequency and severity of oligodactyly induced by 5-FU, as well as the reduction of maternal GSH levels. Combined use of 125 mg/kg phorone and 100 mg/kg BSO i.p. augmented growth retardation induced with 5-FU. Cotreatment with exogenous GSH, at a dose of 300 mg/kg injected intravenously, could not suppress the augmentative effects of phorone and/or BSO on 5-FU teratogenicity under these experimental conditions. These results indicate that the level of endogenous GSH is one of the factors which significantly affects teratogenicity of 5-FU.  相似文献   

6.
7.
The effect of stimulating maternal drug metabolism on caffeine teratogenicity was investigated in C57BL/6J (cytochrome P1-450 inducible) and AKR/J (cytochrome P1-450 noninducible) mice. The inducing agent, beta-naphthoflavone (beta-NF) in corn oil, was administered intraperitoneally (IP) to dams at 20 or 80 mg/kg/d on days 9 and 10 of gestation. Teratogenic injections of 175 mg/kg/d caffeine in deionized water were administered IP on days 11 and 12 of gestation. All dams were sacrificed on day 18 of gestation, and fetuses were fixed for razor blade sectioning and skeletal examination. Caffeine, without maternal metabolism stimulation, caused similar types and rates of malformations in both strains of mice. Inducing drug metabolism during pregnancy with beta-NF protected the embryos from the congenital toxicities of large injections of caffeine. Reductions in embryolethality, limb malformations, and hematoma formation were evident in the inducible strain but not in the strain incapable of being induced. A dosage of eighty mg/kg/d was more effective than 20 mg/kg/d beta-NF in decreasing malformations, suggesting that stimulation of metabolism and caffeine-induced teratogenicity are inversely related. Rapid elimination of caffeine resulting from increasing drug metabolism with the concomitant decrease in toxicity would indicate that caffeine, and not a metabolite, is the toxicant.  相似文献   

8.
HPLC in the reversed-phase mode is used to assay methylxanthines including theobromine, paraxanthine, theophylline and caffeine in urine. The calibration graphs show good linearity in the concentration range 0–10 μg/ml. The limit for accurate quantitation of theophylline was 0.25 μg/ml. Between 6 and 20% of the parent drug is recovered in urine (0–12 h) after the oral administration of sustained release preparations containing 150 and 250 mg theophylline to four volunteers. Theophylline levels above 0.25 μg/ml were found in 1539 out of 3885 urine samples collected from athletes during unannounced doping control in Flanders. Statistical evaluation of the results gives a far outside value [75th percentile + (3× interquartile range)] of 2.25 μg/ml. The ratio theophylline paraxanthine (TP/PX) as an indicator for the non-dietary intake of theophylline seems to be more reliable. The far outside ratio was 0.20. To ensure with the greatest possible degree of certainty that no false-positive result is reported, decision limits of 5 μg/ml and 0.50, for theophylline and the ratio TP/PX respectively, are proposed.  相似文献   

9.
A strain of Serratia marcescens showing the ability to degrade caffeine and other methylxanthines was isolated from soil under coffee cultivation. Growth was observed only with xanthines methylated at the 7 position (caffeine, 1,3,7-dimethylxanthine; paraxanthine, 1,7-dimethylxanthine; theobromine, 3,7-dimethylxanthine and 7-methylxanthine). Paraxanthine and theobromine were released in liquid medium when caffeine was used as the sole source of carbon and nitrogen. When paraxanthine or theobromine were used, 3-methylxanthine, 7-methylxanthine, and xanthine were detected in the liquid medium. Serratia marcescens did not grow with theophylline (1,3-dimethylxanthine), 1-methylxanthine, and 3-methylxanthine, and poor growth was observed with xanthine. Methyluric acid formation from methylxanthines was tested in cell-free extracts by measuring dehydrogenase reduction of tetrazolium salt in native-polyacrylamide gel electrophoresis gel. Activity was observed for all methylxanthines, even those with which no bacterial growth was observed. Our results suggest that in this strain of S. marcescens caffeine is degraded to theobromine (3,7-dimethylxanthine) and/or paraxanthine (1,7-dimethylxanthine), and subsequently to 7-methylxanthine and xanthine. Methyluric acid formation could not be confirmed. Correspondence to: Paulo Mazzafera.  相似文献   

10.
Several authors have recently reported interference in theophylline analysis by paraxanthine (1,7-dimethylxanthine), an important metabolite of caffeine. A method for the determination of theophylline in plasma is described, eliminating caffeine and related compounds by means of straight-phase high-performance liquid chromatography. The resulting procedure is sufficiently rapid, accurate and sensitive to be applied in routine monitoring of therapeutic levels in patients as well as for pharmacokinetic purposes. Although only 0.1 ml of sample is required, concentrations as low as 0.2 mg/l can be measured with acceptable precision. A brief comparative evaluation of this procedure with a radioimmunoassay is made.  相似文献   

11.
1. Extracts prepared from tea leaves with Polyclar AT (insoluble polyvinylpyrrolidine) contained two methyltransferase activities catalysing the transfer of methyl groups from S-adenosylmethionine to 7-methylxanthine, producing theobromine, and to theobromine, producing caffeine. 2. The methyltransferases exhibited the same pH optimum (8.4) and a similar pattern of effects by metal ions, thiol inhibitors and metal-chelating reagents, both for theobromine and caffeine synthesis. Mg2+, Mn2+ and Ca2+ slightly stimulated enzyme activity but they were not essential. Paraxanthine was shown to be most active among methylxanthines, as the methyl acceptor. However, the formation of paraxanthine from 1-methylxanthine was very low and that from 7-methylxanthine was nil, suggesting that the synthesis of caffeine from paraxanthine is of little importance in intact plants. Xanthine, xanthosine, XMP and hypoxanthine were all inactive as methyl acceptors, whereas [2(-14)C]xanthine and [8(-14)C]hypoxanthine were catabolized to allantoin and urea by tea-leaf extracts. The apparent Km values are as follows: 7-methylxanthine, 1.0 times 10(-14)M; theobromine, 1.0 times 10(-3)M; paraxanthine, 0.2 times 10(-3)M; S-adenosylmethionine, 0.25 times 10(-4)M (with each of the three substrates). 3. The results suggest that the pathway for caffeine biosynthesis is as follows: 7-methylxanthine leads to theobromine leads to caffeine. In contrast, it is suggested that theophylline is synthesized from 1-methylxanthine. The methyl groups of the purine ring of caffeine are all derived directly from the methyl group of S-adenosylmethionine. Little is known about the pathways leading to the formation of 7-methylxanthine. 4. A good correlation between caffeine synthesis and shoot formation or growth of tea seedlings was shown, suggesting that the methylating systems in caffeine synthesis are closely associated with purine nucleotide and nucleic acid metabolism in tea plants.  相似文献   

12.
Guaranás, the carbonated beverages (sodas) of choice throughout much of Brazil, are mandated by Brazilian law to contain at least 300 mg guara’a (Paullinia cupana, Sapindaceae) seed per 100 ml soda. Were all the soda manufacturers adhering to the law, they would be consuming almost three times the annual production of seed. Guaraná seeds contain unusually high levels of caffeine, along with smaller amounts of the related purine alkaloids theobromine and theophylline. We investigated the purine alkaloid content of three ethnobotanical guaraná collections and 39 commercial products using HPLC/UV. Many of the products did contain caffeine as the major alkaloid, with traces of theobromine and theophylline. Numerous sodas and syrups contained up to ten times more theobromine than caffeine, and we suspect that these products were adulterated with cacao (Theobroma cacao, Sterculiaceae), the major source of theobromine.  相似文献   

13.
1.Chronic ingestion of caffeine causes a significant increase in levels of A1-adenosine, nicotinic and muscarinic receptors, serotonergic receptors, GABAA receptors and L-type calcium channels in cerebral cortical membranes from mice NIH Swiss strain mice.2.Chronic theophylline and paraxanthine had effects similar to those of caffeine except that levels of L-type channels were unchanged. Chronic theobromine, a weak adenosine antagonist, and 1-isobutyl-3-methylxanthine (IBMX), a potent adenosine antagonist and phosphodiesterase inhibitor, caused only an increase in levels of A1-adenosine receptors. A combination of chronic caffeine and IBMX had the same effects on receptors as caffeine alone. Chronic 3,7-dimethyl-1-propargylxanthine (DMPX), a somewhat selective A2A-antagonist, caused only an increase in levels of A1-adenosine receptors. Pentoxyfylline, an adenosine-uptake inhibitor inactive at adenosine receptors, had no effect on receptor levels or calcium channels.3.A comparison of plasma and brain levels of xanthines indicated that caffeine penetrated more readily and attained somewhat higher brain levels than theophylline or theobromine. Penetration and levels were even lower for IBMX, paraxanthine, DMPX, and pentoxyfylline.4.The results suggest that effective blockade of both A1 and A2A-adenosine receptors is necessary for the full spectrum of biochemical changes elicited by chronic ingestion of xanthines, such as caffeine, theophylline, and paraxanthine.  相似文献   

14.
D A Dawson  J A Bantle 《Teratology》1987,35(2):221-227
Inhibitors of DNA synthesis (hydroxyurea and cytosine arabinoside), protein synthesis (cycloheximide and emetine), and nucleic acid synthesis (5-fluorouracil) were administered with each of three methylxanthines (caffeine, theophylline, and theobromine) to determine if teratogenic effects could be potentiated in Xenopus laevis embryos. The animals were exposed for 96 hours to methylxanthine and inhibitor concentrations that, alone, produced low percentages of malformations. Coadministration of caffeine or theophylline with each inhibitor greatly increased the incidence of malformed embryos. Similar potentiation was induced when theobromine and the protein synthesis inhibitors were tested. A lesser potentiative response was produced when theobromine and the nucleic acid synthesis inhibitor were administered together. Teratogenic potentiation did not occur when theobromine was administered in conjunction with the DNA synthesis inhibitors. Growth reduction in the treatments proved to be the most sensitive indicator of the potentiative effects. This study had two significant findings: the teratogenicity of the protein synthesis inhibitors was greatly increased upon coadministration with each methylxanthine, even though they are typically not very teratogenic by themselves, and coadministration of the DNA synthesis inhibitors with theobromine did not result in teratogenic potentiation. Additionally, this study serves as one method of validating the frog embryo teratogenesis assay-Xenopus (FETAX), since the results obtained concur with results from similar mammalian studies.  相似文献   

15.
Pseudomonas putida CBB5 was isolated from soil by enrichment on caffeine. This strain used not only caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources but also theophylline and 3-methylxanthine. Analyses of metabolites in spent media and resting cell suspensions confirmed that CBB5 initially N demethylated theophylline via a hitherto unreported pathway to 1- and 3-methylxanthines. NAD(P)H-dependent conversion of theophylline to 1- and 3-methylxanthines was also detected in the crude cell extracts of theophylline-grown CBB5. 1-Methylxanthine and 3-methylxanthine were subsequently N demethylated to xanthine. CBB5 also oxidized theophylline and 1- and 3-methylxanthines to 1,3-dimethyluric acid and 1- and 3-methyluric acids, respectively. However, these methyluric acids were not metabolized further. A broad-substrate-range xanthine-oxidizing enzyme was responsible for the formation of these methyluric acids. In contrast, CBB5 metabolized caffeine to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N demethylated to xanthine via 7-methylxanthine. Theobromine-, paraxanthine-, and 7-methylxanthine-grown cells also metabolized all of the methylxanthines mentioned above via the same pathway. Thus, the theophylline and caffeine N-demethylation pathways converged at xanthine via different methylxanthine intermediates. Xanthine was eventually oxidized to uric acid. Enzymes involved in theophylline and caffeine degradation were coexpressed when CBB5 was grown on theophylline or on caffeine or its metabolites. However, 3-methylxanthine-grown CBB5 cells did not metabolize caffeine, whereas theophylline was metabolized at much reduced levels to only methyluric acids. To our knowledge, this is the first report of theophylline N demethylation and coexpression of distinct pathways for caffeine and theophylline degradation in bacteria.Caffeine (1,3,7-trimethylxanthine) and related methylxanthines are widely distributed in many plant species. Caffeine is also a major human dietary ingredient that can be found in common beverages and food products, such as coffee, tea, and chocolates. In pharmaceuticals, caffeine is used generally as a cardiac, neurological, and respiratory stimulant, as well as a diuretic (3). Hence, caffeine and related methylxanthines enter soil and water easily through decomposed plant materials and other means, such as effluents from coffee- and tea-processing facilities. Therefore, it is not surprising that microorganisms capable of degrading caffeine have been isolated from various natural environments, with or without enrichment procedures (3, 10). Bacteria use oxidative and N-demethylating pathways for catabolism of caffeine. Oxidation of caffeine by a Rhodococcus sp.-Klebsiella sp. mixed-culture consortium at the C-8 position to form 1,3,7-trimethyluric acid (TMU) has been reported (8). An 85-kDa, flavin-containing caffeine oxidase was purified from this consortium (9). Also, Mohapatra et al. (12) purified a 65-kDa caffeine oxidase from Alcaligenes sp. strain CF8. Cells of a caffeine-degrading Pseudomonas putida strain (ATCC 700097) isolated from domestic wastewater (13) showed a fourfold increase in a cytochrome P450 absorption spectrum signal compared to cells grown on glucose. Recently, we reported a novel non-NAD(P)+-dependent heterotrimeric caffeine dehydrogenase from Pseudomonas sp. strain CBB1 (20). This enzyme oxidized caffeine to TMU stoichiometrically and hydrolytically, without producing hydrogen peroxide. Further metabolism of TMU has not been elucidated.Several caffeine-degrading bacteria metabolize caffeine via the N-demethylating pathway and produce theobromine (3,7-dimethylxanthine) or paraxanthine (1,7-dimethylxanthine) as the initial product. Theophylline (1,3-dimethylxanthine) has not been reported to be a metabolite in bacterial degradation of caffeine. Subsequent N demethylation of theobromine or paraxanthine to xanthine is via 7-methyxanthine. Xanthine is further oxidized to uric acid by xanthine dehydrogenase/oxidase (3, 10). Although the identities of metabolites and the sequence of metabolite formation for caffeine N demethylation are well established, there is very little information on the number and nature of N-demethylases involved in this pathway.The lack of adequate information on the metabolism and enzymology of theophylline, caffeine, and related methylxanthines prompted us to investigate the degradation of these compounds in detail. We isolated a unique caffeine-degrading bacterium, P. putida CBB5, from soil via enrichment with caffeine as the sole source of carbon and nitrogen. Here we describe a detailed study of the metabolism of theophylline, caffeine, and related di- and monomethylxanthines by CBB5. Our results indicate that CBB5 initially N demethylated caffeine to produce theobromine (major product) and paraxanthine (minor product) before the pathways converged to 7-methylxanthine and xanthine. Surprisingly, CBB5 was also capable of utilizing theophylline as a sole carbon and nitrogen source. CBB5 N demethylated theophylline to 1-methylxanthine and 3-methylxanthine, which were further N demethylated to xanthine. Theophylline N-demethylase activity was detected in cell extracts prepared from theophylline-grown CBB5 cells. 1-Methylxanthine and 3-methylxanthine were detected as products of this NAD(P)H-dependent reaction. To our knowledge, this is the first report of a theophylline degradation pathway in bacteria and coexpression of distinct caffeine and theophylline degradation pathways.  相似文献   

16.
The incorporation of radioactivity from L-[14CH3]-methionine into caffeine by coffee fruits was enhanced by additions of theobromine and paraxanthine but was reduced by additions of theophylline and caffeine. Cell-free extracts prepared from seedlings, partially ripe and unripe coffee fruits showed that only the unripe green fruits contained significant methyltransferase and 7-methyl-N9-nucleoside hydrolase activity. The cell-free extracts catalysed the transfer of methyl groups fromS-adenosyl-L-[14CH3]-methionine to 7-methylxanthine, and 7-methylxanthosine, producing theobromine and to theobromine producing caffeine. The two enzymic methylations exhibited a sharp pH max at 8.5 and a similar pattern of effects with metal chelators, thiol reagents and Mg2+ ions, which were slightly stimulating though not essential to enzyme activity. Paraxanthine (1,7-dimethylxanthine) was sh own to be the most active among methylxanthines as methyl acceptors; however its formation from 1-methylxanthine and 7-methylxanthine was not detectable, and biosynthesis from paraxanthine in the intact plant would therefore appear not to occur. The apparent Km values are as follows: 7-methylxanthine 0.2 mM, theobromine 0.2 mM, paraxanthine 0.07 mM and S-adenosyl-L-methionine with each substrate 0.01 mM. The results suggest the pathway for caffeine biosynthesis in Coffea arabica is: 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine.  相似文献   

17.
The reversed-phase mode of high-performance liquid chromatography was used to determine the intra- and inter-individual levels of UV-absorbing low-molecular-weight compounds in saliva. Many of the compounds known to occur in serum were also found in saliva; however, concentrations in saliva are lower. Both the intra- and inter-individual levels of these compounds vary significantly; in most cases, the inter-individual variance is 2–3 times the intra-individual variance.

Caffeine and its metabolites in saliva are also reported. A greater number of metabolites were found in the saliva of habitual coffee drinkers. After caffeine was administered orally, paraxanthine, theobromine, theophylline, 1-methylxanthine, and 1-methyluric acid were found in the saliva of an individual who did not drink coffee regularly. In this subject, the serum half-life for caffeine was 3.49 h and the saliva half-life was 3.27 h. The half-life of caffeine in an habitual coffee drinker who had refrained from caffeine products for four days was 4.39 h.  相似文献   


18.
Mevinolin is a fungal metabolite, and in the hydroxyacid form, mevinolinic acid, it is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-Co A) reductase, an enzyme essential in cholesterol biosynthesis. Oral administration of 800 mg/kg/day of mevinolin to rats from days 6 through 17 of gestation produced fetal malformations of the vertebrae and ribs in 29% of the litters, and there was a treatment-related increase in the incidence of gastroschisis. Mevinolinic acid at 60 and 90 mg/kg/day also produced fetal malformations of the vertebrae and ribs, and these teratogenic manifestations were markedly suppressed by coadministration of the product of HMG-Co A reductase, mevalonic acid, at a dosage level of 500 mg/kg b.i.d. A diet supplemented with 0.5% or 1.0% cholesterol had no effect on the teratogenicity of mevinolinic acid. Teratology studies in rats with a dihydroxyheptanoic acid derivative of mevinolin, a compound 1/700 as potent as mevinolinic acid as an inhibitor of HMG-Co A reductase, and dihydromevinolinic acid, an inhibitor of this enzyme comparable in activity to mevinolinic acid, indicated that the teratogenicity of these compounds was related to their relative enzyme inhibitory activity. The dihydroxyheptanoic acid derivative was not teratogenic at doses as high as 150 mg/kg b.i.d.; in contrast, when dihydromevinolinic acid was administered at 50 and 100 mg/kg/day, its potency as a teratogenic agent was comparable to that of mevinolinic acid. These studies demonstrated that inhibitors of HMG-CoA reductase produced terata in rats and that the teratogenic effects could be antagonized by coadministration of the enzyme product, mevalonic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
It was hypothesized that the caffeine derivative paraxanthine results in subcontracture increases in intracellular calcium concentration ([Ca(2+)](i)) in resting skeletal muscle. Single fibers obtained from mouse flexor digitorum brevis were loaded with a fluorescent Ca(2+) indicator, indo 1-acetoxymethyl ester. After a stable baseline was recorded, the fiber was superfused with physiological salt solution (Tyrode) containing 0.5, 1.0, 2.5, or 5 mM paraxanthine, resulting in [Ca(2+)](i) increases of 6.4 +/- 2.5, 9.7 +/- 3.6, 26.8 +/- 11.7, and 39.6 +/- 9.6 nM, respectively. The increases in [Ca(2+)](i) were transient and were also observed with exposure to 5 mM theophylline and theobromine. Six fibers were exposed to 5 mM paraxanthine followed by 5 mM paraxanthine in the presence of 10 mM procaine (sarcoplasmic reticulum Ca(2+) release channel blocker). There was no increase from baseline [Ca(2+)](i) when fibers were superfused with paraxanthine and procaine, suggesting that the sarcoplasmic reticulum is the primary Ca(2+) source in the paraxanthine-induced response. In separate experiments, intact flexor digitorum brevis (n = 13) loaded with indo 1-acetoxymethyl ester had a significant increase in [Ca(2+)](i) with exposure to 0.01 mM paraxanthine. It is concluded that physiological and low pharmacological concentrations of paraxanthine result in transient, subcontracture increases in [Ca(2+)](i) in resting skeletal muscle, the magnitude of which is related to paraxanthine concentration.  相似文献   

20.
The determination of caffeine and its analogues is important for a wide variety of analyses and is performed in an assortment of matrices ranging from food to clinical samples. While reversed-phase HPLC has become the standard analysis protocol in most laboratories, capillary electrophoresis has the advantages of higher separation efficiency and shorter separation time. The micellar capillary electrophoresis (MECC) separation of caffeine and its metabolites, theobromine, paraxanthine, theophylline and 1,3,7-trimethyluric acid was investigated using sodium dodecyl sulphate (SDS) as the micellar phase. The effects of pH, micelle concentration, buffer concentration, ionic strength, buffer salts, applied voltage and injection time were studied to select the optimum conditions for the determination of caffeine and its four analogues in drugs, foods and body fluids. Caffeine and its three analogues were resolved within 120 s with detection limits less than 1 μg/ml. Samples could be analyzed utilizing direct injection with satisfactory resolution and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号