首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《Physiologia plantarum》1990,79(2):A74-A77
  相似文献   

4.
5.
Nitrogen fixation in seawater   总被引:1,自引:0,他引:1  
  相似文献   

6.
G. E. Fogg 《Plant and Soil》1971,35(1):393-401
Summary Determinations in the open waters of lakes using N15 as a tracer show that nitrogen fixation is generally associated with the presence of heterocystous blue-green algae and is light dependent. Although nitrogen-fixing blue-green algae tend to be abundant when the concentration of nitrate or ammonia in the water is low, fixation itself is not necessarily inhibited by the presence of these sources of combined nitrogen. The activity of nitrogen-fixing blue-green algae shows a direct relationship to concentration of dissolved organic nitrogen. As a result of the interaction of such factors, nitrogen fixation per unit area of lake surface per year tends to be greatest at an early stage of eutrophication. In relation to the total nitrogen budget of a lake the contribution of biological nitrogen fixation to the income is probably always small but at certain times and in particular water strata it may contribute a major part of the nitrogen assimilated by the phytoplankton.  相似文献   

7.
A recently developed oxygen gradient system and a complex medium were used to isolate a microaerobically N2-fixing heterotrophic bacterium from the rhizosphere of a high fixing Sorghum nutans cultivar. The isolate was identified as nif(+) phenotype of Pseudomonas stutzeri on the basis of cultural, physiological and biochemical characteristics, including DNA/DNA hybridization. N2 fixation was demonstrated by assimilation of 15N2 into cellular protein; the physiology of nitrogen fixation was studied. The isolate contains one 30 MD plasmid and can be cured with associated loss of N2 fixation capability.Dedicated to Prof. Dr. W. Nultsch on the occasion of his 60th birthday  相似文献   

8.
Fixation of carbon dioxide has been demonstrated for extracts from Crithidia fasciculata, Trypanosoma mega and Trypanosoma brucei brucei bloodstream and culture forms. The enzymes involved in this fixation were found to be ADP-stimulated phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32), 'malic' enzyme (E.C. 1.1.138-40) and pyruvate carboxylase (E.C. 6.4.1.1). The subcellular localization of these enzymes has been investigated in all three organisms. Products of short and long term fixation experiments were separated and identified. The importance of carboxylation reactions is discussed in relation to the maintenance of oxidized and reduced coenzyme levels.  相似文献   

9.
10.
11.
The green alga Pyrobotrys stellata Korshik., an obligate phototroph, is unable to utilise carbon dioxide for growth, although assimilation of acetate is dependent on the photosynthetic process. The incorporation of 14CO2 from 14C-bicarbonate into the cells of P. stellata is only 3% of that in Chlorella pyrenoidosa Chick. The activity of the key enzyme of the Calvin cycle, ribulose-1-5-diphosphate carboxylase, is very low in P. stellata, being only 7% of that in C. pyrenoidosa. The determination of the products of 14CO2 fixation in intact cells confirms that ribulose-1-5-diphosphate activity is very low in P. stellata, since little carbon-14 is found in 1–3 diphosphoglyceric acid, the product of carboxylation of ribulose-1-5-diphosphate. It is concluded that the inability of P. stellata to utilize carbon dioxide for growth in the light is probably the result of the low ribulose-1-5-diphosphate carboxylase activity in the organism.  相似文献   

12.
13.
14.
Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ~30 fold between cruises (7.5±4.6 versus 190±82.3 μmol m(-2) d(-1)). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ~5 times higher (574±294 μmol m(-2) d(-1)) than the oxic euphotic layer (48±68 μmol m(-2) d(-1)). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.  相似文献   

15.
16.
Carbon dioxide fixation by microorganisms   总被引:5,自引:5,他引:0  
  相似文献   

17.
Cultures of the non‐heterocystous cyanobacterium, Leptolyngbya nodulosa, could be grown indefinitely in media devoid of combined nitrogen. Acetylene reduction assays showed that these cultures fixed nitrogen in the dark period of a diurnal cycle under micro‐oxygenic or anaerobic conditions. Addition of DCMU to cultures induced much higher rates of nitrogenase activity, most of which occurred in the light. Measurements of activity in the presence of chloramphenicol indicated that nitrogenase is synthesized in darkness and probably destroyed in the subsequent light period. Neither the dark‐mediated nitrogenase in the absence of DCMU nor light‐mediated activity in the presence of DCMU could be sustained for more than 3 days without a photoperiodic light/dark cycle. Axenic cultures could not be grown in the absence of combined nitrogen and did not demonstrate any acetylene reduction activity. An identical nifH gene sequence was found in axenic and non‐axenic cultures of L. nodulosa. RT‐PCR demonstrated that this gene was expressed only in non‐axenic cultures. Western blotting showed that the Fe‐protein of nitrogenase is absent in cultures that are incapable of acetylene reduction, indicating that the lack of nitrogenase activity is likely due to the absence of the enzyme. These observations strongly indicate that L. nodulosa contains a functional nitrogenase which is not expressed in the absence of heterotrophic bacteria.  相似文献   

18.
Summary Non-symbiotic heterotrophic N2 fixation in coniferous bark litter was investigated with the acetylene reduction assay under aerobic and anaerobic conditions. The litter studied was composed essentially of bark, of pH 5 and a C/N ratio of 101; the ratio of available C to available N, which governs N2 fixation, was considerably higher. The rate of N2 fixation was estimated as 2.5–4.4 g N. g–1 dry wt. day–1. Nitrogenase activity was still evident after seven months of incubation under aerobic conditions. The N2-ase activity was O2 dependent: under anaerobic conditions no N2-ase activity was found unless a fermentable C source was added. The importance of N2 fixation in N-poor litter for the maintenance of soil fertility is emphasized.  相似文献   

19.
Nitrogen fixation in decaying chestnut logs   总被引:5,自引:0,他引:5  
Summary Nitrogen fixation is shown to occur in decaying logs of American chestnut, Castanea dentata (Marsh.) Borkh., by acetylene reduction techniques, and its significance is considered in relation to log decomposition in forest ecosystems. re]19721109  相似文献   

20.
The Rhizobium-legume symbiosis culminates in the exchange of nutrients in the root nodule. Bacteria within the nodule reduce molecular nitrogen for plant use and plants provide bacteria with carbon-containing compounds. Following the initial signaling events that lead to plant infection, little is known about the plant requirements for establishment and maintenance of the symbiosis. We screened 44,000 M2 plants from fast neutron-irradiated Medicago truncatula seeds and isolated eight independent mutant lines that are defective in nitrogen fixation. The eight mutants are monogenic and represent seven complementation groups. To monitor bacterial status in mutant nodules, we assayed Sinorhizobium meliloti symbiosis gene promoters (nodF, exoY, bacA, and nifH) in the defective in nitrogen fixation mutants. Additionally, we used an Affymetrix oligonucleotide microarray to monitor gene expression changes in wild-type and three mutant plants during the nodulation process. These analyses suggest the mutants can be separated into three classes: one class that supports little to no nitrogen fixation and minimal bacterial expression of nifH; another class that supports no nitrogen fixation and minimal bacterial expression of nodF, bacA, and nifH; and a final class that supports low levels of both nitrogen fixation and bacterial nifH expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号