首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two feeding experiments were carried out with castrated male pigs weighing between 10 and 30 kg to study acute and persisting dietary effects on growth and on protein and energy metabolism in growing pigs. Pigs were fed semi-synthetic isoenergetic and isonitrogenous diets at 50% protein requirement with either soy protein isolate (SPI) or casein (CAS) as sole protein source. Intake of protein and ME amounted to 9% w/w and 1800 kJ · kg BW ? 0.62 · d ? 1 in Exp. 1, respectively, and 9% w/w and 1430 kJ · kg BW ? 0.62 · d ? 1 in Exp. 2. The CAS diet was supplemented by Lys, Met, Thr and Trp. In Exp. 1 (acute effects), 18 pigs received the CAS diet for 24 days (period 1); 9 pigs were then switched to a SPI diet whereas 9 pigs continued on the CAS diet for another 31 days (period 2). In Exp. 2, a third period of 31 days was added in which the SPI group was switched back to CAS diet. The control group was fed on the CAS diet throughout Exp. 2 (86 days). Altogether the majority of parameters were not affected neither comparing SPI with CAS in Exp. 1 nor inspecting possible persistence of effects in Exp. 2. In detail, in Exp. 1 SPI compared to CAS feeding resulted in a lower efficiency of protein utilisation and lower protein retention. Attendant upon the lower protein retention an increased energy retention as fat was only observed in tendency. SPI feeding caused a decreased body weight, thyroid weight and increased hepatic carbohydrate content that persisted after the diet was changed back to CAS (Exp. 2).  相似文献   

2.
3.
4.

Background

Previous reports suggest that beneficial effects of soy on bone quality are due to the estrogenic actions of isoflavone phytochemicals associated with the protein. However, mechanistic studies comparing the effects of soy diet and estrogens on bone, particularly in rapidly growing animals are lacking.

Methodology and Principal Findings

We studied the effects of short term feeding of soy protein isolate (SPI) on bone in comparison to the effects of 17β-estradiol (E2) in pre-pubertal rats. Female rats were weaned to one of 4 treatments: 1) a control casein-based diet (CAS); 2) CAS with subcutaneous E2 (10 µg/kg/d) (CAS+E2); 3) a SPI-containing diet (SPI); or 4) SPI with subcutaneous E2 (SPI) or SPI with 10 µg/kg/d E2 (SPI+E2) for 14 days beginning on postnatal day 20. SPI increased while E2 decreased bone turnover compared to CAS. In contrast, both treatments decreased serum sclerostin levels. Microarray analysis of RNA isolated from bone revealed 652 genes regulated by SPI, 491 genes regulated by E2, and 266 genes regulated by both SPI diet and E2 compared to CAS. The expression of caveolin-1, a protein localized in the cell membrane, was down-regulated (p<0.05) in rats fed SPI, but not by E2 compared to rats fed casein. Down-regulation of caveolin-1 by SPI was associated with increased BMP2, Smad and Runx2 expression in bone and osteoblasts (p<0.05).

Conclusions/Significance

These results suggest SPI and E2 have different effects on bone turnover prior to puberty. Approximately half of the genes are regulated in the same direction by E2 or SPI, but in combination, SPI blocks the estrogen effects and returns the profile towards control levels. In addition, there are E2 specific and SPI-specific gene changes related to regulation of bone formation.  相似文献   

5.
The investigation included individual measurements of energy metabolism and oxidation of nutrients in 12 castrated male pigs (Sus scrofa) (20-40 kg) and 12 male rats (Rattus norvegicus) (65-105 g). Measurements were carried out in 5-6 days balance periods with ad libitum feeding, followed by 3-4 days of starvation and 4 days of re-feeding. O2 consumption and CO2 production were measured by open-air-circuit respiration units. In the feeding period, protein retention in relation to metabolic live mass (kg(0.75)) was identical for pigs and rats, while there was a tendency of a higher fat retention in pigs than in rats. A substantial part of digested carbohydrate was not oxidized, but transferred to fat metabolism without significant differences (P > 0.05) between pigs and rats (18% vs. 22%). During starvation, nitrogen excretion in urine decreased to 226 mg/kg(0.75) in pigs and to 429 mg/kg(0.75) in rats, indicating a lower rate of body protein degradation in pigs. Heat production was reduced to 592 and 338 kJ/kg(0.75), while the contribution of heat from oxidation of protein (OXP), carbohydrate (OXCHO) and fat (OXF) showed the same pattern for pigs and rats during all periods. Heat production during feeding and re-feeding was covered by OXP+OXCHO with no OXF and reversibly after 2 days of starvation by OXP+OXF with no OXCHO. The rat may be a suitable model for pigs regarding general patterns of quantitative nutrient partition, but any direct application of results measured with rats to pigs shall be taken cautiously, keeping in mind that modern pigs have been selected for a high growth rate and protein deposition which has not been the case for the laboratory rat.  相似文献   

6.
In utero environment is known to affect fetal development. Especially, the distinct fetal programming of carcinogenesis was reported in offspring exposed to maternal diets containing soy protein isolate (SPI) or genistein. Therefore, we investigated whether maternal consumption of low-isoflavone SPI or genistein alters hepatic gene expression and liver development in rat offspring. Female Sprague–Dawley rats were fed a casein diet, a low-isoflavone SPI diet or a casein diet supplemented with genistein (250 mg/kg diet) for 2 weeks before mating and throughout pregnancy and lactation. Male offspring were studied on postnatal day 21 (CAS, SPI and GEN groups). Among 965 differentially expressed hepatic genes related to maternal diet (P<.05), the expression of 590 was significantly different between CAS and SPI groups. Conversely, the expression of 88 genes was significantly different between CAS and GEN groups. Especially, genes involved in drug metabolism were significantly affected by the maternal diet. SPI group showed increased cell proliferation, reduced apoptosis and activation of the mTOR pathway, which may contribute to a higher relative liver weight compared to other groups. We observed higher serum homocysteine levels and lower global and CpG site-specific DNA methylation of Gadd45b, a gene involved in cell proliferation and apoptosis, in SPI group compared to CAS group. Maternal SPI diet also reduced histone H3-Lysine 9 (H3K9) trimethylation and increased H3K9 acetylation in offspring. These results demonstrate that maternal consumption of a low-isoflavone SPI diet alters the hepatic gene expression profile and liver development in offspring possibly by epigenetic processes.  相似文献   

7.
Protein synthesis and eukaryotic initiation factor (eIF) activation are increased in muscle and liver of pigs parenterally infused with amino acids and insulin. To examine the effects of enteral protein and carbohydrate on protein synthesis, pigs (n = 42, 1.7 kg body wt) were fed isocaloric milk diets containing three levels of protein (5, 15, and 25 g x kg body wt(-1) x day(-1)) and two levels of lactose (low = 11 and high = 23 g x kg body wt(-1) x day(-1)) from 1 to 6 days of age. On day 7, pigs were gavage fed after 4-h food deprivation, and tissue protein synthesis rates and biomarkers of mRNA translation were assessed. Piglet growth and protein synthesis rates in muscle and liver increased with dietary protein and plateaued at 15 g x kg body wt(-1) x day(-1) (P < 0.001). Growth tended to be greater in high-lactose-fed pigs (P = 0.07). Plasma insulin was lowest in pigs fed 5 g x kg body wt(-1) x day(-1) protein (P < 0.0001). Plasma branched-chain amino acids increased as protein intake increased (P < 0.0001). Muscle (P < 0.001) and liver (P < or = 0.001) ribosomal protein S6 kinase-1 and eIF4E-binding protein phosphorylation increased with protein intake and plateaued at 15 g x kg body wt(-1) x day(-1). The results indicate that growth and protein synthesis rates in neonatal pigs are influenced by dietary protein and lactose intake and might be mediated by plasma amino acids and insulin levels. However, feeding protein well above the piglet's requirement does not further stimulate the activation of translation initiation or protein synthesis in skeletal muscle and liver.  相似文献   

8.
Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth have been less well examined. The current study compared effects of feeding soy protein isolate (SPI), WPH and RPI for 14 d on tibial bone mineral density (BMD) and bone mineral content (BMC) in intact and ovariectomized (OVX) rapidly growing female rats relative to animals fed casein (CAS). The effects of estrogenic status on responses to SPI were also explored. Tibial peripheral quantitative computerized tomography (pQCT) showed all three protein sources had positive effects on either BMD or BMC relative to CAS (P < 0.05), but SPI had greater effects in both intact and OVX female rats. SPI and E2 had positive effects on BMD and BMC in OVX rats (P < 0.05). However, trabecular BMD was lower in a SPI + E2 group compared to a CAS + E2 group. In OVX rats, SPI increased serum bone formation markers, and serum from SPI-fed rats stimulated osteoblastogenesis in ex vivo. SPI also suppressed the bone resorption marker RatLaps (P < 0.05). Both SPI and E2 increased alkaline phosphatase gene expression in bone, but only SPI decreased receptor activator of nuclear factor-kappaB ligand (RANKL) and estrogen receptor gene expression (P < 0.05). These data suggest beneficial bone effects of a soy diet in rapidly growing animals and the potential for early soy consumption to increase peak bone mass.  相似文献   

9.
Two experiments were carried out to examine the effects of feeding an uncontaminated control diet (CON) or a Fusarium toxin-contaminated diet (FUS; 10.7 mg deoxynivalenol [DON]/kg diet) to growing broilers, which were either uninfected or infected with infectious bursal disease virus (IBDV) beginning at 1 day post hatch. Broilers had been infected at three weeks post hatch with either a classical virulent infectious bursal disease virus (IBDV-IM, Exp. 1) or a very virulent IBDV (vvIBDV, Exp. 2) strain. The effects of the DON-contaminated diet in combination with the virus-infection on the bursa of Fabricius and spleen were determined at 3 and 6-7 days post infection. The transient development of the bursa oedema and the bursa atrophy was not significantly affected by the diet after infection with the different IBDV-strains. The histopathological lesions were more severe in IBDV-IM-infected birds at 6 days post infection when additionally exposed to the FUS diet as compared to the FUS-free feed. Most parameters of the bursa of Fabricius and spleen protein turnover (e.g. fractional protein synthesis rate, protein, DNA and RNA content and derived indices) were significantly and interactively influenced by infection and stage of infection. The vvIBDV-infected birds responded with a more pronounced depressing effect on the fractional protein synthesis rate after feeding the DON-containing FUS diet when compared to their IBDV-IM-infected counterparts, where the opposite effect was observed. It can be concluded that feeding a FUS diet to IBDV-infected broilers might modulate the virulence-dependent pathogenesis of an IBDV infection.  相似文献   

10.
11.
This study evaluated the effects of feeding pigs low protein (LP) diets for different lengths of time after weaning on indices of protein fermentation, the incidence of postweaning diarrhoea (PWD), growth performance, and total-tract apparent digestibility. Sixty weaner pigs weighing 6.1 +/- 0.13 kg (mean +/- SEM) were used in a completely randomised design having five treatments: (i) a high protein diet (HP, 243 g/kg CP) fed for 14 d after weaning (HP14); (ii) a low protein diet (LP, 173 g CP/kg) fed for 5 d after weaning (LP5); (iii) LP diet fed for 7 d after weaning (LP7); (iv) LP diet fed for 10 d after weaning (LP10), and (v) LP diet fed for 14 d after weaning (LP14). All diets were supplemented with lysine, methionine, tryptophan and threonine, with all LP diets additionally fortified with crystalline isoleucine and valine to conform to a proposed ideal amino acid (AA) pattern. A second-stage diet (215 g CP/kg) was fed to pigs at the conclusion of each treatment. None of the diets contained antimicrobial compounds. Feeding a LP diet, regardless of duration of feeding, decreased plasma urea nitrogen (p < 0.001) and faecal ammonia-nitrogen (p < 0.001) contents. Feeding a LP diet, irrespective of feeding duration, decreased the incidence of PWD at day 8 after weaning (p = 0.044), and pigs fed diets LP7, LP010 and LP14 had firmer faeces (p = 0.030, p = 0.047 and p = 0.007, respectively) between days 10 and 12 after weaning. Treatments LP5, LP7, LP10 and LP14 did not reduce (p > 0.05) growth performance up to 106 days after weaning compared to pigs fed the HP diet. Total-tract apparent digestibility of dry matter, energy and crude protein were similar (p > 0.05) between treatments. Our data suggest that feeding a LP diet, supplemented with AA to conform to an ideal AA pattern, for 7-10 days after weaning can reduce PWD in pigs fed antibiotic-free diets without compromising production.  相似文献   

12.
The effect on genetically obese mice of a milk whey protein isolate (WPI) and soy protein isolate (SPI) and their hydrolysates (WPI-H, SPI-H) on the rate of body fat disappearance was investigated. Male yellow KK mice were made obese by feeding with a high-fat diet containing 30% fat from 6 to 10 weeks of age. They were then fed with an energy-restricted low fat (5.0%) and high protein (35% WPI, WPI-H, SPI or SPI-H) diet for 2 weeks at the 60% level of energy intake by mice on laboratory feed. During the weight reduction period, the body weight of the WPI, WPI-H, SPI and SPI-H groups changed by -9.1, -9.1, -10.0 and -11.1 g/14 days, respectively, the reduction being significantly lower in the SPI-H group than in the WPI and WPI-H groups. The plasma total cholesterol level was significantly lower with the SPI diet, and the plasma glucose level was lower with the SPI and SPI-H diets than with the WPI and WPI-H diets. Although the body protein content was comparable in all the groups, the body fat content was significantly lower with the SPI diet than with the WPI diet, and was also significantly lower with the SPI-H diet than with the WPI and WPI-H diets. The weight of the perirenal fat pads was significantly lower with the SPI-H diet than with the WPI and WPI-H diets. These results indicate that SPI and SPI-H are suitable protein sources in an energy-restricted diet for treating obesity.  相似文献   

13.
In immunocastrated (IC) pigs, revaccination (V2) increases lipid deposition (LD) because of increased voluntary feed intake; but little is known on associated effect of diet composition on partitioning of nutrients in IC pigs. Digestibility measurements, N and energy balances in respiration chambers were performed in two subsequent stages in four replicates of two male littermates to determine the changes between 85 (stage 1) and 135 (stage 2) kg live weight due to combined effect of IC, growth and increased feed intake (IC/growth). During stage 1, pigs received a standard low-fat diet (LF diet; 2.5% dry matter (DM) of fat fed at 2.27 MJ metabolizable energy (ME)/kg BW0.60 per day), whereas during stage 2, feed intake was increased to 2.47 MJ ME/kg BW0.60 per day and one littermate was fed LF diet whereas the second received a fat-enriched diet (HF diet; 8.9% DM of fat) to determine the effect of increased dietary fat content on energy utilization in IC pigs. Results from N balance and measurements of gas exchanges were used to calculate respiratory quotient (RQ), heat production (HP), nutrient contribution to fat retention, components of HP, protein deposition (PD) and LD. Nutrients and energy apparent digestibility coefficients, methane losses and N retention (P<0.05) increased with IC/growth. Despite higher ME intake, total HP remained similar (1365 kJ/kg of BW0.60 per day; P=0.47) with IC/growth. Consequently, total retained energy (RE) increased with IC/growth (from 916 to 1078 kJ/kg of BW0.60 per day; P<0.01) with a higher fat retention (625 to 807 kJ/kg BW0.60 per day; P<0.01), originating mainly from carbohydrates associated with a higher lipogenesis (536 to 746 kJ/kg BW0.60 per day; P<0.01) and RQ (1.095 to 1.145; P<0.01). Both PD (from 178 to 217 g/day; P=0.02) and LD (from 227 to 384 g/day; P<0.01) increased due to IC/growth. Feeding HF diet after IC was associated with increased crude fat digestibility (P<0.01) and increased RE as fat (807 to 914 kJ/kg BW0.60 per day; P=0.03), originating mainly from dietary fat (P<0.01) and resulting in increased LD (384 to 435 g/day; P<0.01) and lower RQ (from 1.145 to 1.073; P<0.01). Altogether, present results indicate that increased fatness of IC pigs is a result of increased daily LD caused by higher energy intake and lower basal metabolic rate. In addition, LD is further enhanced by dietary energy enrichment with fat after V2.  相似文献   

14.
The study aimed at determining the effect of protein type and indigestible carbohydrates on the concentration of microbial metabolites in the large intestine of pigs. The experiment involved 36 pigs (15 kg initial body weight) divided into six groups, fed cereal-based diets with highly digestible casein (CAS) or potato protein concentrate (PPC) of lower ileal digestibility. Each diet was supplemented with cellulose, raw potato starch or pectin. After 2 weeks of feeding, pigs were sacrificed and samples of caecal and ascending, transverse and descending colon digesta were collected for analyses of microbial metabolites. PPC increased the concentration of ammonia, p-cresol, indole, n-butyrate, isovalerate and most of the amines in comparison with CAS. Pectin reduced the production of p-cresol, indole, phenylethylamine and isovalerate in the large intestine compared with potato starch. Starch and pectin increased mainly the concentration of n-butyrate and n-valerate in the colon compared to cellulose. Interaction affected mainly amines. Feeding PPC diet with potato starch considerably increased putrescine, cadaverine, tyramine and total amines concentrations compared with PPC diets with pectin and cellulose, whereas feeding CAS diet with starch reduced their concentrations. There was also a significant effect of interaction between diet and intestinal segment on microbial metabolites. In conclusion, PPC intensifies proteolysis in the large intestine and also n-butyrate production. Raw starch and pectin similarly increase n-butyrate concentration but pectin inhibits proteolysis more efficiently than starch. The interactive effects of both factors indicate that pectin and cellulose may beneficially affect fermentative processes in case of greater protein flow to the large intestine.  相似文献   

15.
This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2% (D2), 4% (D4), and 6% BPM (D6), BPM providing up to 20% of total dietary N. Five balance experiments were conducted when the chickens were 3-7, 10-14, 17-21, 23-27, and 30-34 days old. During the same periods, 22-h respiration experiments (indirect calorimetry) were performed with groups of 6 chickens (period 1), 5 chickens (period 2), and one chicken (periods 3-5). After each balance period, one chicken in each cage was killed and the carcass weight was recorded. Chemical analyses were performed on the carcasses from periods 1, 3, and 5. Weight gain, feed intake, and feed conversion rate were found to be similar for all diets. Chickens on D0 retained 1.59 g N x kg(-0.75) x d(-1), significantly more than chickens on D2, D4, and D6, which retained 1.44 g, 1.52 g, and 1.50 g N x kg(-0.75) x d(-1), respectively. This was probably caused by the higher nitrogen content of DO. Neither the HE (p = 0.92) nor the retention of energy (p = 0.88) were affected by diet. Carcass composition was similar between diets, in line with the values for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N.  相似文献   

16.
The effects of different combinations of dietary methionine+cystine (Met+Cys) and dietary crude protein (CP) in finishing broilers were investigated in two growth studies. In Exp. 1, male broilers 29 to 42 days of age were fed 18 diets containing 16.9%, 18.7%, or 20.4% CP with six levels of Met+Cys within each protein level. Similarly, in Exp. 2 another 12 diets containing either 18.0 or 21.5% CP were fed to male broilers 29 to 48 days of age.

In general, the Met+Cys requirement for optimum feed conversion was higher than for maximum growth. In both experiments, between 0.80% and 0.85% methionine+cystine optimized feed conversion. These dietary levels were valid for a 13.05 MJ ME/kg diet fed to broilers growing from 1.2 kg to 2.2 kg (Exp. 1), or for a 13.60 MJ ME/kg diet fed to broilers growing from 1.3 kg to 3.0 kg (Exp. 2).

The Met+Cys requirement was not consistently affected by the dietary CP content in Exp. 1. In Exp. 2, increasing dietary CP from 18.0% to 21.5% tended to increase the Met+Cys requirement for optimum feed conversion.

A dietary CP level of 18.0% to 18.7% supported performance and carcass fat deposition equal to diets containing 20.4% or 21.5% CP, respectively, when the sulfur amino acid content was adequate.  相似文献   

17.
This study was undertaken to determine whether the protein feeding pattern could induce chronic adaptation of protein turnover. After a 15-day adaptive period, elderly (68 yr) and young (26 yr) women received, for 14 days, a diet providing 200 KJ x kg fat-free mass (FFM)(-1) x day(-1), where the daily protein intake (1.7 g protein x kg FFM(-1) x day(-1)) was either spread over 4 meals in the spread pattern or mainly (80%) consumed at noon in the pulse pattern. One day after the end of the dietary treatment, whole body leucine kinetics were measured by use of a continuous [(13)C]leucine infusion, both in the postabsorptive state and in the same fed state. The pulse pattern was able to induce, in young as in elderly women, a lower postabsorptive leucine oxidation and endogenous leucine flux than the spread pattern and improved the responsiveness of nonoxidative leucine disposal during 4-h oral feeding. Thus the pulse pattern was able to induce chronic regulation of protein metabolism in young as in elderly women.  相似文献   

18.
Somatotropin (ST) administration enhances protein deposition and elicits profound metabolic responses, including hyperinsulinemia. To determine whether the anabolic effect of ST is due to hyperinsulinemia, pair-fed weight-matched growing swine were treated with porcine ST (150 microg x kg body wt(-1) x day(-1)) or diluent for 7 days (n = 6/group, approximately 20 kg). Then pancreatic glucose-amino acid clamps were performed after an overnight fast. The objective was to reproduce the insulin levels of 1) fasted control and ST pigs (basal insulin, 5 microU/ml), 2) fed control pigs (low insulin, 20 microU/ml), and 3) fed ST pigs (high insulin, 50 microU/ml). Amino acid and glucose disposal rates were determined from the infusion rates necessary to maintain preclamp blood levels of these substrates. Whole body nonoxidative leucine disposal (NOLD), leucine appearance (R(a)), and leucine oxidation were determined with primed, continuous infusions of [(13)C]leucine and [(14)C]bicarbonate. ST treatment was associated with higher NOLD and protein balance and lower leucine oxidation and amino acid and glucose disposals. Insulin lowered R(a) and increased leucine oxidation, protein balance, and amino acid and glucose disposals. These effects of insulin were suppressed by ST treatment; however, the protein balance remained higher in ST pigs. The results show that ST treatment inhibits insulin's effects on protein metabolism and indicate that the stimulation of protein deposition by ST treatment is not mediated by insulin. Comparison of the protein metabolic responses to ST treatment during the basal fasting period with those in the fully fed state from a previous study suggests that the mechanism by which ST treatment enhances protein deposition is influenced by feeding status.  相似文献   

19.
Dietary soy protein isolate (SPI) reduces hepatic lipogenesis by suppressing gene expression of lipogenic enzymes, including acetyl-CoA carboxylase (ACC). In order to elucidate the mechanism of this regulation, the effect of dietary SPI on promoter (PI and PII) specific gene expression of ACC alpha was investigated. Rats were fed experimental diets containing SPI or casein as a nitrogen source. SPI feeding decreased the hepatic contents of total ACC mRNA as well as triglyceride (TG) content, but dietary SPI affected the amount of sterol-regulatory element binding protein (SREBP)-1 mRNA and protein very little. The amount of ACC mRNA transcribed from PII promoter containing SRE was not significantly affected by dietary protein, while a significant decrease in PI-generated ACC mRNA content was observed in rats fed the SPI diet. These data suggest that SPI feeding decreased the hepatic contents of ACC alpha mRNA mainly by regulating PI promoter via a nuclear factor(s) other than SREBP-1.  相似文献   

20.
A feeding trial was carried out to examine the effect of supplementary protein on the performance of pigs, when swede dry matter replaced 40% of the dry matter supplied by barley in two diets providing different amounts of protein. One hundred and twenty pigs of about 60 kg initial live weight were given one of four diets, each of which provided a constant amount of dry matter daily for 42 days, after which the pigs were slaughtered at about 90 kg live weight. The two basal diets were, on a dry matter basis; barley 2.0 kg plus either 0.2 or 0.4 kg soya bean meal. A mineral and vitamin supplement was given with each diet. There was no significant interaction between the effects of the inclusion of swedes or additional soya bean meal in the diet. The averaged results for pairs of diets showed that the use of swedes decreased carcass-weight gain from 0.62 to 0.51 kg/day and that the increment of soya bean meal increased it from 0.54 to 0.59 kg/day (P < 0.001 for both). It is suggested that the failure of swede dry matter to give an equivalent response to that of barley is not due to the nutritional value of its crude protein component per se but to other physical and chemical factors which may affect its utilization as an energy feed-source for pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号