共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert C Monsen Srinivas Chakravarthy William L Dean Jonathan B Chaires John O Trent 《Nucleic acids research》2021,49(3):1749
Human telomeres contain the repeat DNA sequence 5′-d(TTAGGG), with duplex regions that are several kilobases long terminating in a 3′ single-stranded overhang. The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature. We report here the results of an integrated structural biology approach that combines small-angle X-ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column chromatography and molecular dynamics simulations that provide the most detailed characterization to date of the structure of the telomeric overhang. We find that the single-stranded sequences 5′-d(TTAGGG)n, with n = 8, 12 and 16, fold into multimeric structures containing the maximal number (2, 3 and 4, respectively) of contiguous G4 units with no long gaps between units. The G4 units are a mixture of hybrid-1 and hybrid-2 conformers. In the multimeric structures, G4 units interact, at least transiently, at the interfaces between units to produce distinctive CD signatures. Global fitting of our hydrodynamic and scattering data to a worm-like chain (WLC) model indicates that these multimeric G4 structures are semi-flexible, with a persistence length of ∼34 Å. Investigations of its flexibility using MD simulations reveal stacking, unstacking, and coiling movements, which yield unique sites for drug targeting. 相似文献
2.
Khan S Rodriguez E Patel R Gor J Mulloy B Perkins SJ 《The Journal of biological chemistry》2011,286(28):24842-24854
The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments degree of polymerization 6-18 (dp6-dp18) and dp24, corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s(20,)(w) of HS dp6-dp24 showed a small rotor speed dependence, where similar s(20,)(w) values of 0.82-1.26 S (absorbance optics) and 1.05-1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6-dp24 gave radius of gyration (R(G)) values from 1.03 to 2.82 nm, cross-sectional radius of gyration (R(XS)) values from 0.31 to 0.65 nm, and maximum lengths (L) from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5000-8000 conformationally randomized HS structures gave best fit dp6-dp16 molecular structures that were longer and more bent than their equivalents in heparin. No fits were obtained for HS dp18 or dp24, indicating their higher flexibility. We conclude that HS displays an extended bent conformation that is significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin. 相似文献
3.
4.
In this work, we described a kinetically slow (hour-scale) but thermodynamically favored G-quadruplex conversion induced by a pyridyl carboxamide molecule. This slow transition was observed through CD spectra and gels, and its final stable parallel conformation was identified by 2-aminopurine experiments. Kinetic experiments indicated that this slow process was a first-order reaction, implying it was a unimolecular conversion. Quite distinctly from other reported ligand-driven G-quadruplex conformation alteration, this slow conversion reveals a novel insight into G-quadruplex polymorphism, in accordance with the behavior of human telomere G-quadruplex in a molecular crowding environment in K(+) solution, further enriching the known structural polymorphism of human telomere DNA and providing new consideration for drug design based on G-quadruplexes. 相似文献
5.
6.
Vestergaard B Sanyal S Roessle M Mora L Buckingham RH Kastrup JS Gajhede M Svergun DI Ehrenberg M 《Molecular cell》2005,20(6):929-938
Bacterial class I release factors (RFs) are seen by cryo-electron microscopy (cryo-EM) to span the distance between the ribosomal decoding and peptidyl transferase centers during translation termination. The compact conformation of bacterial RF1 and RF2 observed in crystal structures will not span this distance, and large structural rearrangements of RFs have been suggested to play an important role in termination. We have collected small-angle X-ray scattering (SAXS) data from E. coli RF1 and from a functionally active truncated RF1 derivative. Theoretical scattering curves, calculated from crystal and cryo-EM structures, were compared with the experimental data, and extensive analyses of alternative conformations were made. Low-resolution models were constructed ab initio, and by rigid-body refinement using RF1 domains. The SAXS data were compatible with the open cryo-EM conformation of ribosome bound RFs and incompatible with the crystal conformation. These conclusions obviate the need for assuming large conformational changes in RFs during termination. 相似文献
7.
8.
Kah Wai Lim Veronica Chinn Min Ng Nerea Martín-Pintado Brahim Heddi Anh Tuan Phan 《Nucleic acids research》2013,41(22):10556-10562
Single-stranded DNA overhangs at the ends of human telomeric repeats are capable of adopting four-stranded G-quadruplex structures, which could serve as potential anticancer targets. Out of the five reported intramolecular human telomeric G-quadruplex structures, four were formed in the presence of K+ ions and only one in the presence of Na+ ions, leading often to a perception that this structural polymorphism occurs exclusively in the presence of K+ but not Na+. Here we present the structure of a new antiparallel (2+2) G-quadruplex formed by a derivative of a 27-nt human telomeric sequence in Na+ solution, which comprises a novel core arrangement distinct from the known topologies. This structure complements the previously elucidated basket-type human telomeric G-quadruplex to serve as reference structures in Na+-containing environment. These structures, together with the coexistence of other conformations in Na+ solution as observed by nuclear magnetic resonance spectroscopy, establish the polymorphic nature of human telomeric repeats beyond the influence of K+ ions. 相似文献
9.
We present the solution structure of d(CCCTA2CCCTA2CCCTA2CCCT), a fragment of the vertebrate telomere which folds intramolecularly. The four cytidine stretches form an i-motif which includes six intercalated C.C+ pairs and terminates with the cytidines at the 5' extremity of each stretch. Above, the second TA2 linker loops across one of the narrow grooves, while at the bottom, the first and third linkers loop across the wide grooves. At 30 degrees C, the spectra of the first and third linkers are quasi-degenerate. Severe broadening at lower temperature indicates that this results from motional averaging between at least two structures of each bottom loop, and makes it impossible to solve the configuration of the bottom loops directly, in contrast to the rest of the structure. We therefore turned to the modified sequence d(CCCTA(2)5MCCCTA2CCCUA2CCCT) in which the two base substitutions (underlined) break the quasi-symmetry between linkers 1 and 3. The three loops follow approximately the hairpin "second pattern" of Hilbers. In the first loop, T4 is in the syn orientation, whereas its analog in the third loop, U16, oriented anti, is in a central location, where it interacts with bases of both loops, thus contributing to their tight association. The only motion is a syn/anti flip of A18 in the third loop. Returning to the telomere fragment, we show that each of the bottom loops switches between the structures identified in the first and third loops of the modified structure. The motions are concerted, and the resulting configurations of the bottom loop cluster present a bulge to either right (T4 syn) or left (T16 syn). 相似文献
10.
Zhenjiang Zhang Jixun Dai Elizabeth Veliath Roger A. Jones Danzhou Yang 《Nucleic acids research》2010,38(3):1009-1021
Human telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. The telomeric sequence shows intrinsic structure polymorphism. Here we report a novel intramolecular G-quadruplex structure formed by a variant human telomeric sequence in K+ solution. This sequence forms a basket-type intramolecular G-quadruplex with only two G-tetrads but multiple-layer capping structures formed by loop residues. While it is shown that this structure can only be detected in the specifically truncated telomeric sequences without any 5′-flanking residues, our results suggest that this two-G-tetrad conformation is likely to be an intermediate form of the interconversion of different telomeric G-quadruplex conformations. 相似文献
11.
Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation 总被引:5,自引:4,他引:5 下载免费PDF全文
We report the NMR solution structure of the intramolecular G-quadruplex formed in human telomeric DNA in K+. The hybrid-type telomeric G-quadruplex consists of three G-tetrads linked with mixed parallel–antiparallel G-strands, with the bottom two G-tetrads having the same G-arrangement (anti:anti:syn:anti) and the top G-tetrad having the reversed G-arrangement (syn:syn:anti:syn). The three TTA loop segments adopt different conformations, with the first TTA assuming a double-chain-reversal loop conformation, and the second and third TTA assuming lateral loop conformations. The NMR structure is very well defined, including the three TTA loops and the two flanking sequences at 5′- and 3′-ends. Our study indicates that the three loop regions interact with the core G-tetrads in a specific way that defines and stabilizes the unique human telomeric G-quadruplex structure in K+. Significantly, a novel adenine triple platform is formed with three naturally occurring adenine residues, A21, A3 and A9, capping the top tetrad of the hybrid-type telomeric G-quadruplex. This adenine triple is likely to play an important role in the formation of a stable human telomeric G-quadruplex structure in K+. The unique human telomeric G-quadruplex structure formed in K+ suggests that it can be specifically targeted for anticancer drug design. 相似文献
12.
Intron structure of the human antithrombin III gene differs from that of other members of the serine protease inhibitor superfamily 总被引:7,自引:0,他引:7
Antithrombin III (ATIII) plays an integral role in the coagulation system by inhibiting thrombin and several other activated clotting factors. Inherited deficiency of ATIII is quite common and can result in life-threatening thrombotic complications. In order to understand the basis of ATIII deficiency, we have isolated and characterized the normal human ATIII gene from a recombinant Charon 4A bacteriophage genomic library. The ATIII gene contains six exons and five introns distributed over approximately 19 kilobases of DNA. The positions of introns in the ATIII gene were compared with other members of the serine protease inhibitor family which share 17-31% amino acid homology. When aligned to achieve maximal protein homology, only one of the ATIII introns corresponded to the four introns of rat angiotensinogen or human alpha 1-antitrypsin. Similarly, only one ATIII intron was homologous to the seven introns of chicken ovalbumin. We present two testable models to explain the discrepancy in intron positions among members of the serine protease inhibitor superfamily of genes. 相似文献
13.
The cDNA sequence encoding rabbit, mouse, and rat extracellular superoxide dismutase (EC-SOD) predicts that the protein contains five cysteine residues. Human EC-SOD contains an additional cysteine residue and folds into two forms with distinct disulfide bridge patterns. One form is enzymatically active (aEC-SOD), while the other is inactive (iEC-SOD). Due to the lack of the additional cysteine residue rabbit, mouse, and rat EC-SOD are unable to generate an inactive fold identical to human iEC-SOD. The amino acid sequences predict the formation of aEC-SOD only, but other folding variants cannot be ruled out based on the heterogeneity observed for human EC-SOD. To test this, we purified EC-SOD from rabbit plasma and determined the disulfide bridge pattern. The results revealed that the disulfide bridges are homogeneous and identical to human aEC-SOD. Four cysteine residues are involved in two intra-disulfide bonds while the C-terminal cysteine residue forms an intersubunit disulfide bond. No evidence for other folding variants was detected. These findings show that rabbit EC-SOD exists as an enzymatically active form only. The absence of iEC-SOD in rabbits suggests that the structure and aspects of the physiological function of EC-SOD differs significantly between rabbit and humans. This is an important notion to take when using these animals as model systems for oxidative stress. 相似文献
14.
Formation of the G-quadruplex in the human telomeric sequence can inhibit the activity of telomerase, thus the intramolecular telomeric G-quadruplexes have been considered as an attractive anticancer target. Information of intramolecular telomeric G-quadruplex structures formed under physiological conditions is important for structure-based drug design. Here, we report the first structure of the major intramolecular G-quadruplex formed in a native, non-modified human telomeric sequence in K+ solution. This is a hybrid-type mixed parallel/antiparallel-G-stranded G-quadruplex, one end of which is covered by a novel T:A:T triple capping structure. This structure (Hybrid-2) and the previously reported Hybrid-1 structure differ in their loop arrangements, strand orientations and capping structures. The distinct capping structures appear to be crucial for the favored formation of the specific hybrid-type intramolecular telomeric G-quadruplexes, and may provide specific binding sites for drug targeting. Our study also shows that while the hybrid-type G-quadruplexes appear to be the major conformations in K+ solution, human telomeric sequences are always in equilibrium between Hybrid-1 and Hybrid-2 structures, which is largely determined by the 3′-flanking sequence. Furthermore, both hybrid-type G-quadruplexes suggest a straightforward means for multimer formation with effective packing in the human telomeric sequence and provide important implications for drug targeting of G-quadruplexes in human telomeres. 相似文献
15.
16.
17.
Carole Saintomé Samir Amrane Jean-Louis Mergny Patrizia Alberti 《Nucleic acids research》2016,44(6):2926-2935
DNA and RNA guanine-quadruplexes (G4s) are stabilized by several cations, in particular by potassium and sodium ions. Generally, potassium stabilizes guanine-quartet assemblies to a larger extent than sodium; in this article we report about a higher-order G4 structure more stable in sodium than in potassium. Repeats of the DNA GGGTTA telomeric motif fold into contiguous G4 units. Using three independent approaches (thermal denaturation experiments, isothermal molecular-beacon and protein-binding assays), we show that the (GGGTTA)7GGG sequence, folding into two contiguous G4 units, exhibits an unusual feature among G4 motifs: despite a lower thermal stability, its sodium conformation is more stable than its potassium counterpart at physiological temperature. Using differential scanning calorimetry and mutated sequences, we show that this switch in the relative stability of the sodium and potassium conformations (occurring around 45°C in 100 mM cation concentration) is the result of a more favorable enthalpy change upon folding in sodium, generated by stabilizing interactions between the two G4 units in the sodium conformation. Our work demonstrates that interactions between G4 structural domains can make a higher-order structure more stable in sodium than in potassium, even though its G4 structural domains are individually more stable in potassium than in sodium. 相似文献
18.
19.