首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prior work demonstrated that Heuchera americana, an evergreen herb inhabiting the deciduous forest understory in the southeastern United States, has a 3-4-fold greater photosynthetic capacity under the low-temperature, strong-light, open canopies of winter compared to the high-temperature, weak-light, closed canopies of summer. Moreover, despite the reductions in soil nitrogen, the chilling temperatures, and the increased quantum flux associated with winter, chronic photoinhibition was not observed in this species at this time of the year. We were interested in the photosynthetic acclimation and photoinhibition characteristics of this species when grown under contrasting light and nitrogen regimes. Newly expanded shade-acclimated leaves of forest-grown plants exposed to strong light varying in intensity and duration at 25°C showed a reduction in Fv/Fm (the ratio of variable to maximum room temperature chlorophyll fluorescence measured after dark adaptation), which was correlated with a decline in øa (the intrinsic quantum yield of CO2-saturated O2 evolution on an absorbed light basis). Plants grown in the glasshouse under contrasting light (high and low light; HL and LL, respectively) and nitrogen supply (high and low nitrogen; HN and LN, respectively) regimes showed that photosynthetic acclimation to HL was impaired in LN regimes. The HL-LN plants also had the lowest values of Fv/Fm and of ø on both incident and absorbed light bases and had 50% less chlorophyll (per unit area) compared to plants from other growth regimes. Controlled exposure to bright light at low temperatures (2-3°C) for 3 h resulted in a sharp decrease in Fv/Fm (and rise in Fo, the minimum fluorescence yield) in all plants. Shade-grown plants from both N regimes were highly susceptible to chronic photoinhibition, as indicated by a greater reduction in Fv/Fm and incomplete recovery after 18 h in weak light at 25°C. The HL-HN plants were the least susceptible to chronic photoinhibition, having the smallest decrease in Fv/Fm with near full recovery within 6 h. The decline in Fv/Fm in HL-LN plants was comparable to that of shade-acclimated plants, but recovered fully within 6 h. Low-N plants from both light regimes displayed greater increases in Fo which did not return to pretreatment levels after 18 h of recovery. These studies indicate that HL-LN plants were sensitive to chronic photoinhibition and, at the same time, had a high capacity for dynamic photoinhibition. Experimental garden studies showed that H. americana grown in an open field in summer were photoinhibited and did not fully recover overnight or during extended periods of weak light. These results are discussed in relation to the photosynthetic acclimation of H. americana under natural conditions.  相似文献   

2.
Thermotolerance of photosynthesis in salt‐adapted Atriplex centralasiatica plants (100–400 mm NaCl) was evaluated in this study after detached leaves and whole plants were exposed to high temperature stress (30–48 °C) either in the dark or under high light (1200 mol m?2 s?1). In parallel with the decrease in stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate decreased significantly with increasing salt concentration. There was no change in the maximal efficiency of PSII photochemistry (Fv/Fm) with increasing salt concentration, suggesting that there was no damage to PSII in salt‐adapted plants. On the other hand, there was a striking difference in the response of PSII and CO2 assimilation capacity to heat stress in non‐salt‐adapted and salt‐adapted leaves. Leaves from salt‐adapted plants maintained significantly higher Fv/Fm values than those from non‐salt‐adapted leaves at temperatures higher than 42 °C. The Fv/Fm differences between non‐salt‐adapted and salt‐adapted plants persisted for at least 24 h following heat stress. Leaves from salt‐adapted plants also maintained a higher net CO2 assimilation rate than those in non‐salt‐adapted plants at temperatures higher than 42 °C. This increased thermotolerance was independent of the degree of salinity since no significant changes in Fv/Fm and net CO2 assimilation rate were observed among the plants treated with different concentrations of NaCl. The increased thermotolerance of PSII induced by salinity was still evident when heat treatments were carried out under high light. Given that photosynthesis is considered to be the physiological process most sensitive to high temperature damage, increased thermotolerance of photosynthesis may be of significance since A. centralasiatica, a typical halophyte, grows in the high salinity regions in the north of China, where the temperature in the summer is often as high as 45 °C.  相似文献   

3.
4.
The responses of photosynthesis to high light and low temperature were studied in vines cultivated in the greenhouse in low light. Exposure to high light (1000 /umol m?2 s?1) or low temperature (5 °C) alone had no measurable effect on the photosynthetic processes, but the combination of high light and low temperature caused rapid loss of photosynthetic capacity and a decrease in the efficiency of photosynthetic energy conversion. After a 15 h exposure to 5°C at high light, the Fv/sb/Fmratio had decreased by 80% and the apparent quantum yield by 75%. Nevertheless, when the leaves were returned to low light at 22°C, these parameters recovered rapidly. The foliar pools of ascorbate and glutathione decreased in the first hours of photoinhibitory treatment while the zeaxanthin content increased from negligible levels to about 50% of the total foliar xanthophyll pool. There was a clear correlation between the zeaxanthin content of the leaves and their Fv/Fm ratio during both photoinhibition and recovery. However, there was also a good correlation between the decrease in theFv Fm ratio and the measured decrease in the total foliar levels of the antioxidants ascorbate and glutathione. The amount of D, protein diminished over the same period as the zeaxanthin levels were increasing. This approach, involving simultaneous measurements of several parameters considered to influence photosystemy II activity, clearly demonstrates that measured decreases in Fv/Fm may not simply be related to zeaxanthin levels or to amounts of D1 protein alone but result from multifactoral influences.  相似文献   

5.
Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m?2 s?1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m?2 s?1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m?2 s?1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m–2 s–1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21–32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m–2 s–1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition.  相似文献   

6.
P. Giorio 《Photosynthetica》2011,49(3):371-379
Tomato and pepper leaves were clipped with black leaf clips for dark adaptation under solar radiation in the late spring or early summer 2010 in southern Italy. The leaves showed highly variable maximum PSII quantum yield (Fv/Fm = 0.026−0.802) using a continuous-excitation fluorometer Pocket PEA. These results were confirmed using the modulated fluorometer FMS1 on tomato leaves in mid summer, with Fv/Fm as low as 0.222 ± 0.277 due to nearly equal minimum (Fo) and maximum (Fm) fluorescence emission. A significant clip effect on Fv/Fm occurred after only 12 (tomato) or 25 (pepper) min. Increasing the leaf temperature from 25 to 50°C reportedly induced an Fo increase and Fm decrease so that Fv/Fm approached zero. The hypothesis that black leaf clips overheated under intense solar irradiance was verified by shrouding the clipped leaves with aluminum foil. In clipped leaves of pepper, Fv/Fm with the black clip/Pocket-PEA was 0.769 ± 0.025 (shrouded) and as low as 0.271 ± 0.163 (nonshrouded), the latter showing a double Fo and 32% lower Fm. An 8% clip effect on Fv/Fm was observed with the white clip/FMS1. To avoid the clip effect in high irradiance environments, Fv/Fm measurements with black clip/Pocket PEA system required leaf dark adaptation with radiation-reflecting shrouds. It would be useful if manufacturing companies could develop better radiation-reflecting leaf clips for the Pocket PEA fluorometer.  相似文献   

7.
 The seasonal variation in maximum photochemical efficiency of photosystem II (Fv/Fm) and the relationship between Fv/Fm and climatic factors such as irradiance, frost-nights and daily mean temperature was studied in young Norway spruce trees for 4 years in northern Sweden. As a result of night frost, the Fv/Fm-ratio gradually decreased during the autumn. There was between-year variation in the pattern of Fv/Fm in fully exposed shoots during autumn and spring, largely as an effect of differing temperature conditions. During spring, there was a strong apparent relationship between daily mean temperature and Fv/Fm within the temperature range –3 to 12°C. The light regime to which the needles were exposed during winter affected Fv/Fm, and moderately shaded shoots from the bottom of the canopy generally had a higher Fv/Fm-ratio than fully exposed shoots from the top of the canopy. Received: 1 October 1997 / Accepted: 16 June 1998  相似文献   

8.
Sensitivity to cold and freezing differs between populations within two species of live oaks (Quercus section Virentes Nixon) corresponding to the climates from which they originate. Two populations of Quercus virginiana (originating from North Carolina and north central Florida) and two populations of the sister species, Q. oleoides, (originating from Belize and Costa Rica) were grown under controlled climate regimes simulating tropical and temperate conditions. Three experiments were conducted in order to test for differentiation in cold and freezing tolerance between the two species and between the two populations within each species. In the first experiment, divergences in response to cold were tested for by examining photosystem II (PS II) photosynthetic yield (ΔF/F m′) and non-photochemical quenching (NPQ) of plants in both growing conditions after short-term exposure to three temperatures (6, 15 and 30°C) under moderate light (400 μmol m−2 s−1). Without cold acclimation (tropical treatment), the North Carolina population showed the highest photosynthetic yield in response to chilling temperatures (6°C). Both ecotypes of both species showed maximum ΔF/F m′ and minimum NPQ at their daytime growth temperatures (30°C and 15°C for the tropical and temperate treatments, respectively). Under the temperate treatment where plants were allowed to acclimate to cold, the Q. virginiana populations showed greater NPQ under chilling temperatures than Q. oleoides populations, suggesting enhanced mechanisms of photoprotective energy dissipation in the more temperate species. In the second and third experiments, inter- and intra-specific differentiation in response to freezing was tested for by examining dark-adapted F v/F m before and after overnight freezing cycles. Without cold acclimation, the extent of post-freezing declines in F v/F m were dependent on the minimum freezing temperature (0, −2, −5 or −10°C) for both populations in both species. The most marked declines in F v/F m occurred after freezing at −10°C, measured 24 h after freezing. These declines were continuous and irreversible over the time period. The North Carolina population, however, which represents the northern range limit of Q. virginiana, showed significantly less decline in F v/F m than the north central Florida population, which in turn showed a lower decline in Fv/F m than the two Q. oleoides populations from Belize and Costa Rica. In contrast, after exposure to three months of chilling temperatures (temperate treatment), the two Q. virginiana populations showed no decline in F v/F m after freezing at −10°C, while the two Q. oleoides populations showed declines in F v/F m reaching 0.2 and 0.1 for Costa Rica and Belize, respectively. Under warm growth conditions, the two species showed different F 0 dynamics directly after freezing. The two Q. oleoides populations showed an initial rise in F 0 30 min after freezing, followed by a subsequent decrease, while the Q. virginiana populations showed a continuous decrease in F 0 after freezing. The North Carolina population of Q. virginiana showed a tendency toward deciduousness in response to winter temperatures, dropping 58% of its leaves over the three month winter period compared to only 6% in the tropical treatment. In contrast, the Florida population dropped 38% of its leaves during winter. The two populations of the tropical Q. oleoides showed no change in leaf drop during the 3-months winter (10% and 12%) relative to their leaf drop over the same timecourse in the tropical treatment. These results indicate important ecotypic differences in sensitivity to freezing and cold stress between the two populations of Q. virginiana as well as between the two species, corresponding to their climates of origin.  相似文献   

9.
The use of black leaf-clips for dark adaptation under high solar radiation conditions is reported to underestimate the maximum quantum yield of PSII photochemistry (Fv/Fm) measured by the continuous-excitation fluorometer Pocket PEA. The decrease in Fv/Fm was due to a rise in minimum fluorescence emission (Fo), probably resulting from increased leaf temperature (Tl). In field-grown tomato and pepper, fluorescence parameters and Tl in the region covered by the black leaf clip were measured in clipped leaves exposed to solar radiation during dark adaptation (clipped-only leaves) and in clipped leaves protected from solar radiation by aluminium foil (shrouded clipped leaves). Results confirmed significant Fv/Fm underestimates in clipped-only leaves primarily due to increased Fo. In one tomato experiment, Tl increased from 30 to 44.5°C in clipped-only leaves, with a negligible rise in shrouded clipped leaves. In two respective pepper experiments, Tl in clipped-only leaves increased from 27 to 36.2°C and 33 to 40.9°C. Based on the results of this study, a clip-effect parameter (PCE) on fluorescence emission is proposed as the difference for Fv/Fm (or ?Fo/Fm) between shrouded clipped leaves and clipped-only leaves, which resulted to be 0.706 for tomato, and 0.241 and 0.358 for the two pepper experiments.  相似文献   

10.
Primary photochemistry of photosystem II (F v/F m) of the Antarctic hair grass Deschampsia antarctica growing in the field (Robert Island, Maritime Antarctic) and in the laboratory was studied. Laboratory plants were grown at a photosynthetic photon flux density (PPFD) of 180 μmol m−2 s−1 and an optimal temperature (13 ± 1.5°C) for net photosynthesis. Subsequently, two groups of plants were exposed to low temperature (4 ± 1.5°C day/night) under two levels of PPFD (180 and 800 μmol m−2 s−1) and a control group was kept at 13 ± 1.5°C and PPFD of 800 μmol m−2 s−1. Chlorophyll fluorescence was measured during several days in field plants and weekly in the laboratory plants. Statistically significant differences were found in F v/F m (=0.75–0.83), F 0 and F m values of field plants over the measurement period between days with contrasting irradiances and temperature levels, suggesting that plants in the field show high photosynthetic efficiency. Laboratory plants under controlled conditions and exposed to low temperature under two light conditions showed significantly lower F v/F m and F m. Moreover, they presented significantly less chlorophyll and carotenoid content than field plants. The differences in the performance of the photosynthetic apparatus between field- and laboratory-grown plants indicate that measurements performed in ex situ plants should be interpreted with caution.  相似文献   

11.
The effects of irradiance, temperature, thermal‐ and chilling‐light sensitivities on the photosynthesis of a temperate alga, Sargassum macrocarpum (Fucales) were determined by a pulse amplitude modulation (PAM)‐chlorophyll fluorometer and dissolved oxygen sensors. Oxygenic photosynthesis–irradiance curves at 8, 20, and 28°C revealed that the maximum net photosynthetic rates (NP max) and saturation irradiance were highest at 28°C, and lowest at 8°C. Gross photosynthesis and dark respiration determined over a range of temperatures (8–36°C) at 300 μmol photons m?2 s?1 revealed that the maximum gross photosynthetic rate (GPmax) occurred at 27.8°C, which is consistent with the highest seawater temperature in the southern distributional limit of this species in Japan. Additionally, the maximum quantum yields of photosystem II (F v/F m) during the 72‐h temperature exposures were stable at 8–28°C, but suddenly dropped to zero at higher temperatures, indicative of PSII deactivation. Continuous exposure (12 h) to irradiance of 200 (low) and 1000 (high) μmol photons m?2 s?1 at 8, 20, and 28°C revealed greater declines in their effective quantum yields (Φ PSII) under high irradiance. While Φ PSII under low irradiance were very similar with the initial F v/F m under 20 and 28°C, values rapidly decreased with exposure duration at 8°C. At this temperature, F v/F m did not recover to initial values even after 12 h of dark acclimation. Final F v/F m of alga at 28°C under high irradiance treatment also did not recover, suggesting its sensitivity to photoinhibition at both low and high temperatures. These photosynthetic characteristics reflect both the adaptation of the species to the general environmental conditions, and its ability to acclimate to seasonal changes in seawater temperature within their geographical range of distribution.  相似文献   

12.
The heat tolerance of 8 temperate- and 1 subtropical-origin C3 species as well as 17 tropical-origin ones, including C3, C4, and CAM species, was estimated using both F0-T curve and the ratio of chlorophyll fluorescence parameters, prior to and after high temperature treatment. When leaves were heated at the rate of ca. 1 °C min−1 in darkness, the critical temperature (Tc) varied extensively among species. The Tc's of all 8 temperate-origin species ranged between 40–46 °C in winter (mean temperature 16–19 °C), and between 32–48 °C in summer (mean temperature ca. 30 °C). Those for 1 subtropical- and 12 tropical-origin C3 species ranged between 25–44 °C and 35–48 °C, and for 1 CAM and 4 C4 species were 41–47 and 45–46 °C, respectively. Acclimating three C3 herbaceous plants at high temperature (33/28 °C, day/night) for 10 d in winter caused their Tc's rising to nearly the values measured in summer. When leaves were exposed to 45 °C for 20 min and then kept at room temperature in darkness for 1 h, a significant correlation between RFv/m (the ratio of Fv/Fm before and after 45 °C treatment) and Tc was observed for all tested temperate-origin C3 species as well as tropical-origin CAM and C4 species. However, F0 and Fv/Fm of the tropical-origin C3 species were less sensitive to 45 °C treatment, regardless of a large variation of Tc; thus no significant correlation was found between their RFv/m and Tc. Thus Tc might not be a suitable index of heat tolerance for plants with wide range of environmental adaptation. Nevertheless, Tc's of tropical origin C3 species, varying and showing high plasticity to seasonal changes and temperature treatment, appeared suitable for the estimation of the degree of temperature acclimation in the same species.  相似文献   

13.
Kao  Wen-Yuan  Tsai  Tyng-Tyng  Chen  Wang-Hwa 《Photosynthetica》1998,34(4):497-504
Photosynthetic CO2 uptake and chlorophyll (Chl) a fluorescence of C4 perennial grasses, Miscanthus floridulus (Labill) Warb and M. transmorrisonensis Hayata, from altitudes in central Taiwan of 390 and 2700 m, respectively, were studied at 10 and 25 °C to find if the species differ in their photosynthetic responses to a low temperature, and whether their photosystems 2 become more susceptible to the photoinhibition at low temperatures. For both species, the maximum photosynthetic rate (Pmax) was reduced when the leaves were exposed to 10 °C. At irradiances higher than 400 µmol m-2 s-1, the values of Fv/Fm were reduced in both species at 10 °C but not at 25 °C, which indicated the photoinhibition at 10 °C. Reductions in Pmax and the values of Fv/Fm at 10 °C were lesser in M. transmorrisonensis than in M. floridulus.  相似文献   

14.
Seeds of Suaeda salsa were cultured in dark for 3 d and betacyanin accumulation in seedlings was promoted significantly. Then the seedlings with accumulated betacyanin (C+B) were transferred to 14/10 h light/dark and used for chilling treatment 15 d later. Photosystem 2 (PS2) photochemistry, D1 protein content, and xanthophyll cycle during the chilling-induced photoinhibition (exposed to 5 °C at a moderate photon flux density of 500 μmol m−2 s−1 for 3 h) and the subsequent restoration were compared between the C+B seedlings and the control (C) ones. The maximal efficiency of PS2 photochemistry (Fv/Fm), the efficiency of excitation energy capture by open PS2 centres (Fv′/Fm′), and the yield of PS2 electron transport (ΦPS2) of the C+B and C leaves both decreased during photoinhibition. However, smaller decreases in Fv/Fm, Fv′/Fm′, and ΦPS2 were observed in the C+B leaves than in C ones. At the same time, the deepoxidation state of xanthophyll cycle, indicated by (A+Z)/(V+A+Z) ratio, increased rapidly but the D1 protein content decreased considerably during the photoinhibition. The increase in rate of (A+Z)/(V+A+Z) was higher but the D1 protein turnover was slower in C+B than C leaves. After photoinhibition treatment, the plants were transferred to a dim irradiation (10 μmol m−2 s−1) at 25 °C for restoration. During restoration, the chlorophyll (Chl) fluorescence parameters, D1 protein content, and xanthophyll cycle components relaxed gradually, but the rate and level of restoration in the C+B leaves was greater than those in the C leaves. The addition of betacyanins to the thylakoid solution in vitro resulted in similar changes of Fv/Fm, D1 protein content, and (A+Z)/(V+A+Z) ratio during the chilling process. Therefore, betacyanin accumulation in S. salsa seedlings may result in higher resistance to photoinhibition, larger slowing down of D1 protein turnover, and enhancement of non-radiative energy dissipation associated with xanthophyll cycle, as well as in greater restoration after photoinhibition than in the control when subjected to chilling at moderate irradiance.  相似文献   

15.
Photosynthetic CO2 uptake and chlorophyll (Chl) a fluorescence of C4 perennial grasses, Miscanthus floridulus (Labill) Warb and M. transmorrisonensis Hayata, from altitudes in central Taiwan of 390 and 2700 m, respectively, were studied at 10 and 25 °C to find if the species differ in their photosynthetic responses to a low temperature, and whether their photosystems 2 become more susceptible to the photoinhibition at low temperatures. For both species, the maximum photosynthetic rate (Pmax) was reduced when the leaves were exposed to 10 °C. At irradiances higher than 400 μmol m-2 s-1, the values of Fv/Fm were reduced in both species at 10 °C but not at 25 °C, which indicated the photoinhibition at 10 °C. Reductions in Pmax and the values of Fv/Fm at 10 °C were lesser in M. transmorrisonensis than in M. floridulus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Chlorophyll fluorescence parameter Fv/Fm, an indicator of the maximum efficiency of PS2, is routinely measured in the field with plant leaves darkened by leaf clips. I found that on a sunny day of subtropical summer, the Fv/Fm ratio was often underestimated because of a large F0 value resulted from a high leaf temperature caused by clipping the leaf under high irradiance, especially for long (e.g. 20 min) duration. This phenomenon may overestimate the down-regulation of PS2 efficiency under high irradiance. When leaf temperature was lower than 40 °C, the F0 level of rice leaves under clipping remained practically unchanged. However, F0 increased drastically with leaf temperature rising over 40 °C. In most measurements, no significant difference in Fm was found between rice leaves dark-adapted by leaf clips for 10 min and for 20 min. Therefore, shading leaf clips to prevent a drastic increase of leaf temperature, using F0 measured immediately after the leaf being darkened to calculate Fv/Fm, as well as shortening the duration of leaf clipping are useful means to avoid an underestimate of Fv/Fm.  相似文献   

17.
We investigated the influence of root zone temperature (RZT) and the aerial application of paraquat on stress defence mechanisms of Trichosanthes cucumerina L. To achieve this objective, T. cucumerina cv Green was grown with roots at 25 and 30°C root zone temperature and maintained at 20 ± 1°C air temperature in a growth chamber. These RZT and air temperature had earlier been shown to favor growth and fruit production in T. cucumerina. Plants at each RZT were subjected to paraquat treatment (+P) and without paraquat treatment (−P). Paraquat (0.2 mmol/L) was applied as aerial spray. Results showed that the individual main effects of RZT and paraquat treatments significantly affected the chlorophyll fluorescence and gas exchange parameters, while the interaction of both treatments had no significant effect. Results showed that the total phenolics and ascorbic acid contents of T. cucumerina at 30°C were significantly higher than at 25°C. The T. cucumerina plants in +P treatment recorded significantly lower maximum photochemical efficiency (F v/F m), net photosynthesis (A), transpiration rate (E), intercellular CO2 concentration (C i) and stomatal conductance (g 1) compared to untreated plants. Also, plants raised at 30°C recorded significantly higher F v/F m, A, E, C i and g 1 compared to plants raised at 25°C. Plants that were sampled at 48 h after paraquat treatment recorded a higher degree of oxidative damage compared to those sampled at 24 h after treatment. We showed that the degree of damage suffered by T. cucumerina, when treated with paraquat either at 25 or 30°C RZT was similar at 48 h after treatment. We concluded that either at 25 or 30°C, exposure of T. cucumerina to paraquat would impose the same degree of oxidative damage.  相似文献   

18.
This study investigates how hydration during light and dark periods influences growth in two epiphytic old forest lichens, the green algal Lobaria pulmonaria and the cyanobacterial L. scrobiculata. The lichens were cultivated in growth chambers for 14 days (200 μmol m?1 s?2; 12 h photoperiod) at four temperature regimes (25/20 °C, 21/16 °C, 13/8 °C, and 6/1 °C; day/night temperatures) and two hydration regimes (12 h day-time hydration; 12 h day-time + 12 h night-time hydration). Growth was highly dynamic, showing that short-term growth experiments in growth cabinets have a high, but largely unexplored potential in functional lichen studies. The highest measured growth rates were not far from the maximal dry matter gain estimated from published net photosynthetic CO2 uptake data. For the entire data set, photobiont type, temperature, hydration regime and specific thallus mass accounted for 46.6 % of the variation in relative growth rate (RGR). Both species showed substantially higher relative growth rates based on both biomass (RGR) and thallus area (RTAGR) when they were hydrated day and night compared to hydration in light only. Chronic photoinhibition was substantial in thalli hydrated only during the day time and kept at the highest and lowest temperature regimes, resulting in exponential increases in RGR with increasing maximal PSII efficiency (F v/F m) in both species. However, the depression in F v/F m was stronger for the cyanolichen than for the cephalolichen at extreme temperatures. The growth-stimulating effect of night-time hydration suggests that nocturnal metabolic activity improves recovery of photoinhibition and/or enhances the conversion rate of photosynthates into thallus extension.  相似文献   

19.
20.
The chlorophyll fluorescence parameter Fv/Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three‐tiered approach of phenotyping by Fv/Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North‐Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv/Fm. The high Fv/Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non‐significant under the given heat stress. This study validated that our three‐tiered approach of phenotyping by Fv/Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号