首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The endocrine control of compensatory hypertrophy was investigated in 12 Morgan stallions, four each at one, two and three years of age. Half were assigned to be unilaterally castrated (UC) in January and half to remain intact (IN). Nine blood samples were taken from each stallion at half-hour intervals 30, 90, and 150 d after unilateral castration for radioimmunoassay of serum concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone. Mean serum LH concentration was greater (P<0.06) in UC than IN stallions; however, the difference was greatest at 30 d and least at 150 d. Serum LH was greater (P<0.01) in two- and three-year-olds than in one-year-olds. The mean log(10) for serum FSH concentration was greater (P<0.06) in UC than IN stallions. Mean serum testosterone concentrations were similar in UC and IN stallions for all sample days, suggesting that the single testes of the UC stallions produced as much testosterone as the two testes of the IN stallions. Two- and three-year-old stallions had greater (P<0.01) serum testosterone than one-year-old stallions. Unilateral castration of stallions was associated with a significant increase in serum LH and FSH concentrations and, perhaps, higher intratesticular testosterone, which may explain, in part, the compensatory hypertrophy noted in the remaining testis.  相似文献   

2.
Aged men, known to have high serum gonadotropin levels and reduced spermatogenic potential, were used to study the relationship between serum follicle-stimulating hormone (FSH) and germ cell degeneration. Serum hormones were measured from blood obtained at autopsy. Phase-contrast cytometry was used to enumerate germ cells in homogenates of fixed testes from 13 younger (24-51 yr) and 14 aged (69-90 yr) men. The developmental steps of spermatogenesis during which germ cells degenerate were determined by comparing potential daily sperm production based on primary spermatocytes with daily sperm production based on two different types of spermatids. During spermiogenesis, there was no significant degeneration in the younger or aged men. During postprophase of meiosis, aged men had more (p less than 0.01) germ cell degeneration, significantly lower (p less than 0.05) serum testosterone, and greater (p less than 0.01) serum FSH than did younger men. Germ cell degeneration during postprophase of meiosis was negatively correlated (p less than 0.01) to daily sperm production and significantly (p less than 0.01) related to serum concentrations of FSH. As revealed in these aged men, meiotic germ cell degeneration has a direct effect on daily sperm production and is significantly related to serum FSH concentrations.  相似文献   

3.
The onset of pubertal testicular growth (Po) occurred in 12 out of 20 male chimpanzees surveyed monthly for at least 3.7 yr. When animals were synchronized according to Po, the mean weight gain was found to be higher before than after Po, and testicular volume started to rise immediately after Po. The earlier significant hormonal events were a rapid rise in LH and a slight testosterone increase occurring 6 mo before Po. Thereafter, the levels of LH remained elevated while testosterone continued to rise in parallel with the testicular volume. FSH levels increased suddenly at Po, 6 mo after the LH increase. FSH remained elevated for only 9 mo, then dropped to prepubertal levels. The dissociation between onsets of pubertal increases in LH and FSH secretions suggests that the complete reawakening of the hypothalamic-pituitary unit lasts several months. The secondary drop of FSH, occurring at the time of spermarche, may be induced by factor(s) secreted by the testis.  相似文献   

4.
Stereological methods were employed in two experiments with adult stallions: to confirm seasonal variation in number of Sertoli cells and to characterize the annual cycle of the Sertoli cell population. In the first experiment, testes from 28 adult (4-20 years old) horses obtained in the non-breeding season (December-January) were compared to testes from 28 adult horses in the breeding season (June-July). Sertoli cell numbers were calculated from the nuclear volume density, parenchymal volume, and volume of an individual Sertoli cell nucleus determined by reconstruction of serial sections or from average height and width measurements. The number of Sertoli cells per testis was significantly greater in the breeding season. In a second experiment involving 43-48 adult horses in each 3-month period, the Sertoli cell population was higher (P less than 0.05) in May-July than other periods and higher (P less than 0.01) than in November-January. These combined studies confirm seasonal differences in the Sertoli cell numbers per testis and define the annual cycle of the Sertoli cell population in adult stallions.  相似文献   

5.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

6.
Commercially available radioimmunoassay (RIA) kits for human follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were adapted for quantitation of these hormones in serum from bottlenosed dolphins (Tursiops truncatus). Serum samples from over 160 wild and 70 captive animals were assayed in order to determine basal concentrations of FSH and LH in these animals, as well as to detect possible differences between various groups. Mean FSH and LH levels for all animals were 0.22 +/- 0.08 and 0.37 +/- 0.18 ng/ml, respectively. Although wild animals had higher FSH and LH levels than captive ones, the differences were not statistically significant (P less than 0.07). However, both FSH and LH were significantly (P less than 0.01 and P less than 0.05, respectively) elevated in females when compared to males. Adults and peripubescent animals had significantly (P less than 0.01) higher LH levels than did juveniles. Among wild animals, serum concentrations of FSH and LH reflected seasonal differences. Samples obtained in early summer (Gulf of Mexico population) contained significantly (P less than 0.01) higher concentrations of FSH and LH than samples obtained in the fall (Indian River, Florida population). Both FSH and LH were significantly elevated in samples from confirmed pregnant animals as compared to the overall mean and to a sample from a confirmed nonpregnant female. Our observations indicate that these RIAs can reliably detect serum FSH and LH from bottlenosed dolphins and represent the first quantitation of these hormones in cetaceans.  相似文献   

7.
8.
Various methods have been proposed for the selection of suitable sturgeon broodstock for artificial reproduction. In this study, serum levels of reproductive hormones, namely sturgeon homologues of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E2) and progestrone (P), were measured by radioimmunoassay (RIA) in 36 mature broodstock before and after injection of pituitary extract, and the results correlated with sex, age and oocyte polarization index (p). Mature males were significantly younger than females, and showed significant differences in serum P and T levels following pituitary extract injection, although not before that. A significant difference was found between LH, E2 and T before and after injection in the female group. There was also a significant difference between serum levels of T and P in the fertile and infertile groups. Stepwise discriminant function analysis was used to discriminate between fertile and infertile groups. The function had 93,8% overall correct classification, i.e. amongst 100 female broodstock fish, almost 94% of them would be correctly allocated to the relevant group. So the proposed model provides a reliable method for selecting suitable broodstock fish.  相似文献   

9.
B C Bruot  J W Clemens 《Life sciences》1987,41(13):1559-1565
Male Lewis rats were made arthritic by injecting 1 mg Mycobacterium butyricum suspended in Freund's incomplete adjuvant into their right hind footpad. Arthritic and non-arthritic animals were sacrificed on days 18, 21, 24 or 27 after the injection of the adjuvant. Body weight, left and right hind paw volume, thymus weight, and serum luteinizing hormone (LH) and testosterone concentrations were determined on each day. Adjuvant injection resulted in a significant enlargement in the left and right hind paws on days 18 through 27. In contrast, body and thymus weights were reduced significantly in the arthritic rats compared to the non-arthritic animals. Serum concentrations of testosterone were also reduced significantly in arthritic rats on days 18, 21 and 24 after the injection of the adjuvant. However, by day 27 serum testosterone concentrations recovered to near control values. Serum concentrations of LH in the arthritic animals were elevated on days 18 through 27. These results demonstrate that serum testosterone concentrations were reduced in rats with adjuvant-induced arthritis. The reduction in serum testosterone is probably not the result of an impaired hypothalamic-pituitary axis.  相似文献   

10.
11.
During aging, the male Japanese quail exhibits a loss of fertility, increased morphological abnormalities in the testes, and a higher incidence of Sertoli cell tumors. Although there is a coincident loss of reproductive behavior, plasma androgen levels remain high until testicular regression occurs in association with senescence. The purpose of this study was to compare mean specific binding of chicken luteinizing hormone (LH) and follicle-stimulating hormone (FSH) as a measure of testicular receptors during identified stages during aging. Males were categorized according to age (young = 9 months, middle aged = 24 months, or old = 36+ months) and sexual behavior (active or inactive). Testicular samples were collected immediately after perfusion with 4% paraformaldehyde from the following groups: young active (n = 8), young photoregressed (n = 5), young photoregressed plus testosterone implant (n = 4), middle-aged active (n = 8), middle-aged inactive (n = 4), old inactive (n = 5), and old inactive plus testosterone implant (n = 6). A crude plasma membrane fraction was prepared from the testes of each bird and an aliquot deriving from 10 mg of testicular tissue was used for binding assay. Specific binding of labeled LH or FSH was expressed as percentage of total radioactive hormone. Results showed significant (P < 0.05) age-related decreases in both FSH and LH receptor numbers. The highest FSH binding was found in young and middle-aged active males, with low binding in old inactive males. Testicular LH binding decreased during aging, with a sharp decrease in middle-aged males, which was similar to old males. Testosterone implants weakly stimulated FSH and LH binding in old males. Both LH and FSH binding decreased in photoregressed young males. However, testosterone implants stimulated increased LH binding, but did not affect FSH binding in young photoregressed males. These results provide evidence for separate regulation of testicular LH and FSH receptors, with testosterone stimulation of LH receptor, but not FSH receptor number in young males. However, during aging there appears to be a loss of this response, potentially because of the reduced efficacy of testosterone stimulation, thereby implying a diminished capacity for response with aging.  相似文献   

12.
Seasonal variation in number of spermatogonia and germ cell degeneration was evaluated to determine which mechanism might explain seasonal differences in daily sperm production per testis (DSP/testis) or per g parenchyma (DSP/g) in stallions. Comparing 28 adult stallions (4 to 20 yr old) in each of the nonbreeding (December-January) and breeding (June-July) seasons, the population of type A spermatogonia was more than two times greater (P less than 0.01) in the breeding season. While the number of type B spermatogonia also was elevated (P less than 0.01) in the breeding season, the number of type B spermatogonia/type A spermatogonium was similar (P greater than 0.05) between seasons. Daily sperm production/testis based on each cell type from type B spermatogonia to spermatids with elongated nuclei was lower (P less than 0.01) in the nonbreeding season. Based on DSP/g, there was significant degeneration during the meiotic divisions in the nonbreeding season. However, this reduction in potential spermatozoan production was not significant (P greater than 0.05) when considering DSP/testis. Significant germ cell degeneration also occurred in the breeding season between type B spermatogonia and primary spermatocytes. However, the type A spermatogonial population was sufficiently elevated to override this degeneration and to explain elevated production of sperm in the breeding season of stallions.  相似文献   

13.
The main purpose of this study was to determine if temporal relationships exist between serum concentrations of free fractions of thyroxin (fT4) and triiodothyronine (fT3), follicle-stimulating hormone (FSH) levels, and Sertoli cell differentiation in euthyroid ram lamb testes. Additionally, testicular thyroid hormone (TH) receptors (TRs) were identified using immunohistochemistry and Western blot analysis. Weekly testicular biopsies and jugular blood samples were collected from 12 ram lambs over the 9 weeks of study. Hormone concentrations and the numbers of dividing Sertoli cells per seminiferous tubule (ST) area were analyzed relative to chronological age of animals and the two distinctive stages of Sertoli cell differentiation: (a) tight junction/ST lumen formation and (b) the onset of support mechanisms for the development of multiple germ cell types (presence of primary spermatocytes in >95% STs). Circulating FSH concentrations increased (p < 0.05) immediately after first detection of ST lumen and reached a nadir (p < 0.05) just prior to the end of the first wave of spermatogenesis. A decline in both fT4 and fT3 levels (p < 0.05) occurred after Sertoli cells had formed the ST lumen and began supporting germ cell differentiation. There was a positive correlation between the numbers of proliferating Sertoli cells and serum fT4 (r = 0.51, p < 0.001) and fT3 (r = 0.52, p < 0.001) concentrations. TRs were expressed throughout the study period; however, prior to the formation of ST lumen, two isoforms were detected while only one TR isoform was present by the end of the first wave of spermatogenesis. Overall, the exit of Sertoli cells from the cell cycle that presages their final differentiation begins when THs and FSH levels are high, suggesting a permissive role of these hormones in the maturation of STs in prepubertal ram lambs.  相似文献   

14.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Three experiments were conducted to determine the effect of sampling interval on serum concentrations of LH, FSH, and prolactin (PRL) in prepubertal, ovariectomized, and cycling gilts. In all experiments, blood samples were drawn at 2-min intervals for 4 h from indwelling jugular catheters. Mean serum hormone concentrations, mean number of peaks, and mean and maximum peak heights of LH, FSH, and PRL were calculated using values reflecting 2-, 6-, 10-, 20-, 30-, and 60-min sampling intervals. For LH, FSH, and PRL, mean serum concentrations can be obtained through blood samples drawn at hourly intervals. Since LH peaks are very distinct in pigs, the number of secretory peaks and mean peak height can be obtained via samples drawn at 20-min intervals. Since FSH and PRL peaks are less well defined, a more frequent sampling interval (10 min) is needed to determine number of peaks and mean peak height. To obtain the maximum peak height or the number of minutes for LH, FSH, or PRL to rise from its nadir to zenith, blood samples need to be drawn at 2-min intervals. Regardless of reproductive state, these data indicate that the sampling interval needed to characterize serum concentrations of LH, FSH, and PRL in the gilt is dependent upon the parameter in question.  相似文献   

16.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

17.
The effect of exogenous testosterone on sperm production, seminal quality and libido was studied in 24 stallions. Based on pretreatment data, a stallion was assigned to 1 of 3 groups each containing 8 animals. One member of each group received 0 (Group 1), 50 (Group 2), or 200 micrograms (Group 3) testosterone propionate per kg body weight every 2 days for 88 days. The lower dose of testosterone had no significant effect on most of the parameters studied: the higher dose depressed total scrotal width at Day 90 post-treatment (P less than 0.01), total spermatozoa ejaculated between Days 60 and 90 (P less than 0.01) and 96 progressively motile spermatozoa between Days 60 and 90 (P less than 0.10). One half of the stallions from each treatment were castrated on Day 90. In the operated stallions, the mean number of spermatids per g testicular parenchyma in the controls (Group 1) was significantly (P less than 0.05) higher than that in Group 3 whereas the difference between the number of spermatids/testis in the same stallions of these two groups was significant only at P less than 0.1. Testosterone propionate treatment did not influence time to erection, interval from first mount to ejaculation or number of mounts per ejaculation. The treatment of normal, intact stallions with testosterone propionate did not enhance libido and caused a severe depression of reproductive capacity.  相似文献   

18.
Variation in ability of boars to produce testosterone and luteinizing hormone (LH) in response to both gonadotropin releasing hormone (GnRH) and adrenocorticotropic hormone (ACTH) stimulation, as well as quantitative relationships between pretreatment and posttreatment responses, were assessed in a population of 38 boars of similar age and breeding. Peripheral testosterone concentrations following either GnRH or ACTH increased (P less than 0.01) to peak circulating levels of 7.16 +/- 0.62 and 8.42 +/- 0.81 ng/ml by 120 and 45 min, respectively. Post-GnRH testosterone area varied from 7.44 to 50.84 ng/ml X h (CV = 47.44%) and post-ACTH testosterone area ranged from 3.05 to 28.78 ng/ml X h (CV = 46.09%). GnRH-induced increases in testosterone were preceded by elevations (P less than 0.01) in peripheral LH concentrations but ACTH had no effect upon LH levels. Post-GnRH area varied from 7.07 to 125.45 ng/ml X h (CV = 76.61%). Significant (P less than 0.01) correlations were obtained between pre-GnRH and post-GnRH testosterone areas (r = 0.58) and between pre-ACTH and post-ACTH testosterone areas (r = 0.67). Nonsignificant (P greater than 0.10) correlations were obtained between post-GnRH and post-ACTH testosterone areas (r = 0.006) and between post-GnRH testosterone and LH areas (r = 0.09). The testosterone producing ability of boars was highly variable and their innate ability to produce testosterone influenced their response to GnRH and ACTH. Additionally, the mechanisms by which GnRH and ACTH influence testosterone production in boars appear to differ. Variation in the ability of boars to produce testosterone could not be explained on the basis of differences in circulating levels of LH.  相似文献   

19.
To evaluate the roles of FSH and LH in follicular growth, GnRH-immunized anestrous heifers (n = 17) were randomly assigned (Day 0) to one of three groups (n = 5 or 6). Group 1 received i.m. injections of 1.5 mg porcine FSH (pFSH) 4 times/day for 2 days; group 2 received i.v. injections of 150 microg pLH 6 times/day for 6 days; group 3 received both pFSH and pLH as described for groups 1 and 2. After slaughter on Day 6, measurements were made of follicle number and size, and follicular fluid concentrations of progesterone (P(4)), estradiol (E(2)), and aromatase activity. Injection of pFSH increased (P: < 0.01) the serum concentrations of FSH between 12 and 54 h. Infusion of pLH increased (P: < 0.05) mean and basal concentrations of LH and LH pulse frequency. Serum E(2) concentrations were higher (P: < 0.05) for heifers given pFSH + pLH than those given either pFSH or pLH alone. There was no difference (P: > or = 0.24) between treatments in the number of small follicles (<5 mm). Heifers given pFSH or pFSH + pLH had more (P: < or = 0.02) medium follicles (5.0-9.5 mm) than those that were given pLH alone (none present). Heifers given pFSH + pLH had more (P: = 0.04) large follicles (> or =10 mm) than those given either pLH or pFSH alone (none present). Overall, only 1 of 35 small follicles and 2 of 96 medium follicles were E(2)-active (i.e., E(2):P(4) >1.0), whereas 18 of 21 large follicles (all in the pFSH + pLH treatment) were E(2)-active; of these, 8 of 18 had aromatase activity. Concentrations of E(2) and E(2) activity in follicular fluid were correlated (r > or = 0.57; P: < 0.0001) with aromatase activity in heifers given pLH + pFSH. In conclusion, pLH failed to stimulate follicle growth greater than 5 mm; pFSH stimulated growth of medium follicles that were E(2)-inactive at slaughter and failed to increase serum E(2) concentrations; whereas pFSH + pLH stimulated growth of medium follicles and E(2)-active large follicles, and a 10- to 14-fold increase in serum E(2) concentrations.  相似文献   

20.
The in vitro incorporation of [3H]leucine into immunoprecipitable follicle-stimulating hormone (FSH) and luteinizing hormone (LH) was assessed for pituitaries from pony mares treated with testosterone propionate (TP) or oil (controls). Mares were treated every other day with TP (n = 4) at 350 micrograms/kg of body weight or with an equivalent volume of oil (n = 4). One day following the sixth injection of TP, each mare received an intravenous injection of gonadotropin releasing hormone (GnRH) at 1.0 micrograms/kg body weight and was bled frequently for 4 h. Treatment of mares with TP reduced FSH (P less than 0.05) and LH (P less than 0.01) concentrations in daily blood samples and increased (P less than 0.01) the amount of FSH secreted in response to GnRH compared with control mares. Incorporation of [3H]leucine into immunoprecipitable FSH was also greater (P less than 0.01) in pituitaries from TP-treated mares compared with control mares on both a per mg tissue and per anterior pituitary basis. The amount of LH secreted after GnRH, the amount left in the pituitary and the incorporation of [3H]leucine into LH were not affected by treatment. These results confirm earlier conclusions drawn from indirect evidence that androgens increase the production of FSH in the mare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号