首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Human gamma-glutamyl hydrolase (hGH) is a central enzyme in folyl and antifolylpoly-gamma-glutamate metabolism, which functions by catalyzing the cleavage of the gamma-glutamyl chain of substrates. We previously reported that Cys-110 is essential for activity. Using the sequence of hGH as a query, alignment searches of protein data bases were made using the SSearch and TPROBE programs. Significant similarity was found between hGH and the glutamine amidotransferase type I domain of Escherichia coli carbamoyl phosphate synthetase. The resulting hypothesis is that the catalytic fold of hGH is similar to the folding of this domain in carbamoyl phosphate synthetase. This model predicts that Cys-110 of hGH is the active site nucleophile and forms a catalytic triad with residues His-220 and Glu-222. The hGH mutants C110A, H220A, and E222A were prepared. Consistent with the model, mutants C110A and H220A were inactive. However, the V(max) of the E222A hGH mutant was reduced only 6-fold relative to the wild-type enzyme. The model also predicted that His-171 in hGH may be involved in substrate binding. The H171N hGH mutant was found to have a 250-fold reduced V(max). These studies to determine the catalytic mechanism begin to define the three dimensional interactions of hGH with poly-gamma-glutamate substrates.  相似文献   

2.
Huang X  Raushel FM 《Biochemistry》1999,38(48):15909-15914
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit, and a small amidotransferase subunit, which belongs to the Triad family of glutamine amidotransferases. Previous studies have established that the reaction mechanism of the small subunit proceeds through the formation of a gamma-glutamyl thioester with Cys-269. The roles in the hydrolysis of glutamine played by the conserved residues, Glu-355, Ser-47, Lys-202, and Gln-273, were determined by mutagenesis. In the X-ray crystal structure of the H353N mutant, Ser-47 and Gln-273 interact with the gamma-glutamyl thioester intermediate [Thoden, J. B., Miran, S. G., Phillips, J. C., Howard, A. J., Raushel, F. M., and Holden, H. M. (1998) Biochemistry 37, 8825-8831]. The mutants E355D and E355A have elevated values of K(m) for glutamine, but the overall carbamoyl phosphate synthesis reaction is unperturbed. E355Q does not significantly affect the bicarbonate-dependent ATPase or glutaminase partial reactions. However, this mutation almost completely uncouples the two partial reactions such that no carbamoyl phosphate is produced. The partial recovery of carbamoyl phosphate synthesis activity in the double mutant E355Q/K202M argues that the loss of activity in E355Q is at least partly due to additional interactions between Gln-355 and Lys-202 in E355Q. The mutants S47A and Q273A have elevated K(m) values for glutamine while the V(max) values are comparable to that of the wild-type enzyme. It is concluded that contrary to the original proposal for the catalytic triad, Glu-355 is not an essential residue for catalysis. The results are consistent with Ser-47 and Gln-273 playing significant roles in the binding of glutamine.  相似文献   

3.
4.
The role of individual amino acid residues in the 98-102 and 111-112 regions of bovine kappa-casein in its interaction with the milk-clotting enzyme chymosin (rennin) was investigated. to this end the tryptic 98-112 fragment of kappa-casein was modified in its N- and/or C-terminal part by chemical (guanidation, ethoxyformylation, repeated Edman degradation) and enzymic (carboxypeptidase) treatments. Further, use was made of short synthetic kappa-casein analogues in which His-102 had been replaced by Pro or Lys. All peptides and their derivatives were tested comparatively at various pH values for their ability to act as chymosin substrates via specific cleavage of the peptide bond at position 105-106. The results indicate that in the alternating 98-102 sequence (His-Pro-His-Pro-His) the His as well as the Pro residues contribute to the substrate activity with no predominant role of any one of these groups. Another interaction site is formed by the Lys residue at position 111 of the substrate. A model of the enzyme-substrate complex is proposed. Herein the 103-108 fragment of the substrate, to be accommodated within the enzyme's active-site cleft, is brought into position by electrostatic binding (via His-98, His-100, His-102 and Lys-111) near the entrance of the cleft. These interactions are strongly supported by Pro residues at positions 99, 101, 109 and 110 of the substrate, which act as stabilizers of the proper conformation of the substrate in the enzyme-substrate complex.  相似文献   

5.
S G Miran  S H Chang  F M Raushel 《Biochemistry》1991,30(32):7901-7907
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from ATP, bicarbonate, and glutamine. The amidotransferase activity of this enzyme is catalyzed by the smaller of the two subunits of the heterodimeric protein. The roles of four conserved histidine residues within this subunit were probed by site-directed mutagenesis to asparagine. The catalytic activities of the H272N and H341N mutants are not significantly different than that of the wild-type enzyme. The H353N mutant is unable to utilize glutamine as a nitrogen source in the synthetase reaction or the partial glutaminase reaction. However, binding to the glutamine active site is not impaired in the H353N enzyme since glutamine is found to activate the partial ATPase reaction by 40% with a Kd of 54 microM. The H312N mutant has a Michaelis constant for glutamine that is 2 orders of magnitude larger than the wild-type value, but the maximal rate of glutamine hydrolysis is unchanged. These results are consistent with His-353 functioning as a general acid/base catalyst for proton transfers while His-312 serves a critical role for the binding of glutamine to the active site.  相似文献   

6.
The multifunctional protein CAD catalyzes the first three steps in pyrimidine biosynthesis in mammalian cells, including the synthesis of carbamyl phosphate from bicarbonate, MgATP and glutamine. The Syrian hamster CAD glutaminase (GLNase) domain, a trpG-type amidotransferase, catalyzes glutamine hydrolysis in the absence of MgATP and bicarbonate (Km = 95 microM and kcat = 0.14 s-1). Unlike E. coli carbamyl phosphate synthetase (Wellner, V.P., Anderson, P.M., and Meister, A. (1973) Biochemistry 12, 2061-2066), a stable thioester intermediate did not accumulate when the mammalian enzyme was incubated with glutamine. However, a covalent adduct could be isolated when the protein was denatured in acid. The steady state concentration of the intermediate increased with increasing glutamine concentration to nearly one mole per mole of enzyme with half saturation at 105 microM, close to the Km value for glutamine. The adduct formed at the active site of the glutaminase domain. The rate of breakdown of the intermediate (k4), determined directly, was 0.17 s-1 and the rate of formation (k3) was estimated as 0.52 s-1. In the absence of MgATP and bicarbonate, k4 = kcat indicating that the decomposition of the intermediate is the rate-limiting step. The intermediate was chemically and kinetically competent, and the glutamine dissociation constant (330 microM) and rate constants were consistent with steady state kinetics and accurately predicted the steady state concentration of the intermediate. These studies suggest a mechanism similar to the cysteine proteases such as recently proposed by Mei and Zalkin (Mei, B., and Zalkin, H. (1989) J. Biol. Chem. 264, 16613-16619) who identified a catalytic triad in glutamine phosphoribosyl-5'-pyrophosphate amidotransferase, a purF-type enzyme. MgATP and bicarbonate increased kcat of the glutaminase reaction 14-fold by accelerating both the rate of formation and the rate of breakdown of the intermediate, and prevented the accumulation of the intermediate; however, the Km value for glutamine was not significantly altered. The instability of the thioester intermediate leads to appreciable hydrolysis of glutamine in the absence of the other substrates. However, bicarbonate alone spares glutamine by increasing the Km and Ks of glutamine to 600 and 8960 microM, respectively, thus reducing kcat/Km 3-fold when MgATP is limiting. In the absence of MgATP and bicarbonate, ammonia decreased the rate of hydrolysis and the accumulation of the thioester intermediate indicating that ammonia had direct access to the thioester at the GLNase domain active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
S Chen  J W Burgner  J M Krahn  J L Smith  H Zalkin 《Biochemistry》1999,38(36):11659-11669
Single tryptophan residues were incorporated into each of three peptide segments that play key roles in the structural transition of ligand-free, inactive glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase to the active enzyme-substrate complex. Intrinsic tryptophan fluorescence and fluorescence quenching were used to monitor changes in a phosphoribosyltransferase (PRTase) "flexible loop", a "glutamine loop", and a C-terminal helix. Steady state fluorescence changes resulting from substrate binding were used to calculate binding constants and to detect the structural rearrangements that coordinate reactions at active sites for glutamine hydrolysis and PRTase catalysis. Pre-steady state kinetics of enzyme.PRPP and enzyme.PRPP.glutamine complex formation were determined from stopped-flow fluorescence measurements. The kinetics of the formation of the enzyme.PRPP complex were consistent with a model with two or more steps in which rapid equilibrium binding of PRPP is followed by a slow enzyme isomerization. This isomerization is ascribed to the closing of the PRTase flexible loop and is likely the rate-limiting step in the reaction of PRPP with NH(3). The pre-steady state kinetics for binding glutamine to the binary enzyme. PRPP complex could also be fit to a model involving rapid equilibrium binding of glutamine followed by an enzyme isomerization step. The changes monitored by fluorescence account for the interconversions between "end state" structures determined previously by X-ray crystallography and define an intermediate enzyme.PRPP conformer.  相似文献   

8.
Galactose mutarotase catalyzes the conversion of beta-d-galactose to alpha-d-galactose during normal galactose metabolism. The enzyme has been isolated from bacteria, plants, and animals and is present in the cytoplasm of most cells. Here we report the x-ray crystallographic analysis of human galactose mutarotase both in the apoform and complexed with its substrate, beta-d-galactose. The polypeptide chain folds into an intricate array of 29 beta-strands, 25 classical reverse turns, and 2 small alpha-helices. There are two cis-peptide bonds at Arg-78 and Pro-103. The sugar ligand sits in a shallow cleft and is surrounded by Asn-81, Arg-82, His-107, His-176, Asp-243, Gln-279, and Glu-307. Both the side chains of Glu-307 and His-176 are in the proper location to act as a catalytic base and a catalytic acid, respectively. These residues are absolutely conserved among galactose mutarotases. To date, x-ray models for three mutarotases have now been reported, namely that described here and those from Lactococcus lactis and Caenorhabditis elegans. The molecular architectures of these enzymes differ primarily in the loop regions connecting the first two beta-strands. In the human protein, there are six extra residues in the loop compared with the bacterial protein for an approximate longer length of 9 A. In the C. elegans protein, the first 17 residues are missing, thereby reducing the total number of beta-strands by one.  相似文献   

9.
Mycothiol (1-D-myo-inosityl 2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside, MSH or AcCys-GlcN-inositol (Ins)) is the major reducing agent in actinomycetes, including Mycobacterium tuberculosis. The biosynthesis of MSH involves a deacetylase that removes the acetyl group from the precursor GlcNAc-Ins to yield GlcN-Ins. The deacetylase (MshB) corresponds to Rv1170 of M. tuberculosis with a molecular mass of 33,400 Da. MshB is a Zn2+ metalloprotein, and the deacetylase activity is completely dependent on the presence of a divalent metal cation. We have determined the x-ray crystallographic structure of MshB, which reveals a protein that folds in a manner resembling lactate dehydrogenase in the N-terminal domain and a C-terminal domain consisting of two beta-sheets and two alpha-helices. The zinc binding site is in the N-terminal domain occupying a position equivalent to that of the NAD+ co-factor of lactate dehydrogenase. The Zn2+ is 5 coordinate with 3 residues from MshB (His-13, Asp-16, His-147) and two water molecules. One water would be displaced upon binding of substrate (GlcNAc-Ins); the other is proposed as the nucleophilic water assisted by the general base carboxylate of Asp-15. In addition to the Zn2+ providing electrophilic assistance in the hydrolysis, His-144 imidazole could form a hydrogen bond to the oxyanion of the tetrahedral intermediate. The extensive sequence identity of MshB, the deacetylase, with mycothiol S-conjugate amidase, an amide hydrolase that mediates detoxification of mycothiol S-conjugate xenobiotics, has allowed us to construct a faithful model of the catalytic domain of mycothiol S-conjugate amidase based on the structure of MshB.  相似文献   

10.
Anthranilate synthase is a glutamine amidotransferase that catalyzes the first reaction in tryptophan biosynthesis. Conserved amino acid residues likely to be essential for glutamine-dependent activity were identified by alignment of the glutamine amide transfer domains in four different enzymes: anthranilate synthase component II (AS II), p-aminobenzoate synthase component II, GMP synthetase, and carbamoyl-P synthetase. Conserved amino acids were mainly localized in three clusters. A single conserved histidine, AS II His-170, was replaced by tyrosine using site-directed mutagenesis. Glutamine-dependent enzyme activity was undetectable in the Tyr-170 mutant, whereas the NH3-dependent activity was unchanged. Affinity labeling of AS II active site Cys-84 by 6-diazo-5-oxonorleucine was used to distinguish whether His-170 has a role in formation or in breakdown of the covalent glutaminyl-Cys-84 intermediate. The data favor the interpretation that His-170 functions as a general base to promote glutaminylation of Cys-84. Reversion analysis was consistent with a proposed role of His-170 in catalysis as opposed to a structural function. These experiments demonstrate the application of combining sequence analyses to identify conserved, possibly functional amino acids, site-directed mutagenesis to replace candidate amino acids, and protein chemistry for analysis of mutationally altered proteins, a regimen that can provide new insights into enzyme function.  相似文献   

11.
A family of four glutamine amidotransferases has a homologous glutamine amide transfer domain, designated purF-type, that is named after purF-encoded glutamine phosphoribosylpyrophosphate amidotransferase. The glutamine amide transfer domain of approximately 194 amino acid residues is at the NH2 terminus of the protein chain. Site-directed mutagenesis was used to replace several of the 9 invariant amino acids in the glutamine amide transfer domain of glutamine phosphoribosylpyrophosphate amidotransferase. The results indicate that a Cys1-His101-Asp29 catalytic triad is involved in the glutamine amide transfer function of this enzyme. The evidence suggests that His101 functions to increase the nucleophilicity of Cys1, which is used to form a glutamine-enzyme covalent intermediate. Asp29 has a role subsequent to formation of the covalent intermediate. The Cys-His-Asp catalytic triad is implicated in the glutamine amide transfer function of purF-type amidotransferases.  相似文献   

12.
Asparagine synthetase B catalyzes the assembly of asparagine from aspartate, Mg(2+)ATP, and glutamine. Here, we describe the three-dimensional structure of the enzyme from Escherichia colidetermined and refined to 2.0 A resolution. Protein employed for this study was that of a site-directed mutant protein, Cys1Ala. Large crystals were grown in the presence of both glutamine and AMP. Each subunit of the dimeric protein folds into two distinct domains. The N-terminal region contains two layers of antiparallel beta-sheet with each layer containing six strands. Wedged between these layers of sheet is the active site responsible for the hydrolysis of glutamine. Key side chains employed for positioning the glutamine substrate within the binding pocket include Arg 49, Asn 74, Glu 76, and Asp 98. The C-terminal domain, responsible for the binding of both Mg(2+)ATP and aspartate, is dominated by a five-stranded parallel beta-sheet flanked on either side by alpha-helices. The AMP moiety is anchored to the protein via hydrogen bonds with O(gamma) of Ser 346 and the backbone carbonyl and amide groups of Val 272, Leu 232, and Gly 347. As observed for other amidotransferases, the two active sites are connected by a tunnel lined primarily with backbone atoms and hydrophobic and nonpolar amino acid residues. Strikingly, the three-dimensional architecture of the N-terminal domain of asparagine synthetase B is similar to that observed for glutamine phosphoribosylpyrophosphate amidotransferase while the molecular motif of the C-domain is reminiscent to that observed for GMP synthetase.  相似文献   

13.
Bacterial indole-3-acetyl-l-aspartic acid (IAA-Asp) hydrolase has shown very high substrate specificity compared with similar IAA-amino acid hydrolase enzymes found in Arabidopsis thaliana. The IAA-Asp hydrolase also exhibits, relative to the Arabidopsis thaliana-derived enzymes, a very high Vmax (fast reaction rate) and a higher Km (lower substrate affinity). These two characteristics indicate that there are fundamental differences in the catalytic activity between this bacterial enzyme and the Arabidopsis enzymes. By employing a computer simulation approach, a catalytic residue, His-385, from a non-sequence-related zinc-dependent exopeptidase of Pseudomonas was found to structurally match His-405 of IAA-Asp hydrolase. The His-405 residue is conserved in all related sequences of bacteria and Arabidopsis. Point mutation experiments of this His-405 to seven different amino acids resulted in complete elimination of enzyme activity. However, point mutation on the neighboring His-404 to eight other residues resulted in reduction, to various degrees, of enzyme activity. Amino acid substitutions for His-404 also showed that this residue influenced the minor activity of the IAA-Asp hydrolase for the substrates IAA-Gly, IAA-Ala, IAA-Ser, IAA-Glu and IAA-Asn. These results show the value and potential of structural modeling for predicting target residues for further study and for directing bioengineering of enzyme structure and function.  相似文献   

14.
Cytidine triphosphate synthetases (CTPSs) produce CTP from UTP and glutamine, and regulate intracellular CTP levels through interactions with the four ribonucleotide triphosphates. We solved the 2.3-A resolution crystal structure of Escherichia coli CTPS using Hg-MAD phasing. The structure reveals a nearly symmetric 222 tetramer, in which each bifunctional monomer contains a dethiobiotin synthetase-like amidoligase N-terminal domain and a Type 1 glutamine amidotransferase C-terminal domain. For each amidoligase active site, essential ATP- and UTP-binding surfaces are contributed by three monomers, suggesting that activity requires tetramer formation, and that a nucleotide-dependent dimer-tetramer equilibrium contributes to the observed positive cooperativity. A gated channel that spans 25 A between the glutamine hydrolysis and amidoligase active sites provides a path for ammonia diffusion. The channel is accessible to solvent at the base of a cleft adjoining the glutamine hydrolysis active site, providing an entry point for exogenous ammonia. Guanine nucleotide binding sites of structurally related GTPases superimpose on this cleft, providing insights into allosteric regulation by GTP. Mutations that confer nucleoside drug resistance and release CTP inhibition map to a pocket that neighbors the UTP-binding site and can accommodate a pyrimidine ring. Its location suggests that competitive feedback inhibition is affected via a distinct product/drug binding site that overlaps the substrate triphosphate binding site. Overall, the E. coli structure provides a framework for homology modeling of other CTPSs and structure-based design of anti-CTPS therapeutics.  相似文献   

15.
Ubiquitin C-terminal hydrolases catalyze the removal of adducts from the C-terminus of ubiquitin. We have determined the crystal structure of the recombinant human Ubiquitin C-terminal Hydrolase (UCH-L3) by X-ray crystallography at 1.8 A resolution. The structure is comprised of a central antiparallel beta-sheet flanked on both sides by alpha-helices. The beta-sheet and one of the helices resemble the well-known papain-like cysteine proteases, with the greatest similarity to cathepsin B. This similarity includes the UCH-L3 active site catalytic triad of Cys95, His169 and Asp184, and the oxyanion hole residue Gln89. Papain and UCH-L3 differ, however, in strand and helix connectivity, which in the UCH-L3 structure includes a disordered 20 residue loop (residues 147-166) that is positioned over the active site and may function in the definition of substrate specificity. Based upon analogy with inhibitor complexes of the papain-like enzymes, we propose a model describing the binding of ubiquitin to UCH-L3. The UCH-L3 active site cleft appears to be masked in the unliganded structure by two different segments of the enzyme (residues 9-12 and 90-94), thus implying a conformational change upon substrate binding and suggesting a mechanism to limit non-specific hydrolysis.  相似文献   

16.
Structural and kinetic properties of the human 2-enoyl thioester reductase [mitochondrial enoyl-coenzyme A reductase (MECR)/ETR1] of the mitochondrial fatty acid synthesis (FAS) II pathway have been determined. The crystal structure of this dimeric enzyme (at 2.4 Å resolution) suggests that the binding site for the recognition helix of the acyl carrier protein is in a groove between the two adjacent monomers. This groove is connected via the pantetheine binding cleft to the active site. The modeled mode of NADPH binding, using molecular dynamics calculations, suggests that Tyr94 and Trp311 are critical for catalysis, which is supported by enzyme kinetic data. A deep, water-filled pocket, shaped by hydrophobic and polar residues and extending away from the catalytic site, was recognized. This pocket can accommodate a fatty acyl tail of up to 16 carbons. Mutagenesis of the residues near the end of this pocket confirms the importance of this region for the binding of substrate molecules with long fatty acyl tails. Furthermore, the kinetic analysis of the wild-type MECR/ETR1 shows a bimodal distribution of catalytic efficiencies, in agreement with the notion that two major products are generated by the mitochondrial FAS II pathway.  相似文献   

17.
List F  Bocola M  Haeger MC  Sterner R 《Biochemistry》2012,51(13):2812-2818
The glutamine amidotransferase (GATase) family comprises enzyme complexes which consist of glutaminase and synthase subunits that catalyze in a concerted reaction the incorporation of nitrogen within various metabolic pathways. An important feature of GATases is the strong stimulation of glutaminase activity by the associated synthase. To understand the mechanism of this tight activity regulation, we probed by site-directed mutagenesis four residues of the glutaminase subunit TrpG from anthranilate synthase that are located between the catalytic Cys-His-Glu triad and the synthase subunit TrpE. In order to minimize structural perturbations induced by the introduced exchanges, the amino acids from TrpG were substituted with the corresponding residues of the closely related glutaminase HisH from imidazole glycerol phosphate synthase. Steady-state kinetic characterization showed that, in contrast to wild-type TrpG, two TrpG variants with single exchanges constitutively hydrolyzed glutamine in the absence of TrpE. A reaction assay performed with hydroxylamine as a stronger nucleophile replacing water and a filter assay with radiolabeled glutamine indicated that the formation of the thioester intermediate is the rate-limiting step of constitutive glutamine hydrolysis. Molecular dynamics simulations with wild-type TrpG and constitutively active TrpG variants suggest that the introduced amino acid exchanges result in a distance reduction between the active site Cys-His pair, which facilitates the deprotonation of the sulfhydryl group of the catalytic cysteine and thus enables its nucleophilic attack onto the carboxamide group of the glutamine side chain. We propose that native TrpG in the anthranilate synthase complex is activated by a similar mechanism.  相似文献   

18.
H Teng  C Grubmeyer 《Biochemistry》1999,38(22):7363-7371
The dimeric zinc metalloenzyme L-histidinol dehydrogenase (HDH) catalyzes an unusual four-electron oxidation of the amino alcohol histidinol via the histidinaldehyde intermediate to the acid product histidine with the reduction of two molecules of NAD. An essential base, with pKa about 8, is involved in catalysis. Here we report site-directed mutagenesis studies to replace each of the five histidine residues (His-98, His-261, His-326, His-366, and His-418) in Salmonella typhimurium with either asparagine or glutamine. In all cases, the overexpressed enzymes were readily purified and behaved as dimers. Substitution of His-261 and His-326 by asparagine caused about 7000- and 500-fold decreases in kcat, respectively, with little change in KM values. Similar loss of activity was also reported for a H261N mutant Brassica HDH [Nagai, A., and Ohta, D. (1994) J. Biochem. 115, 22-25]. Kinetic isotope effects, pH profiles, substrate rescue, and stopped-flow experiments suggested that His-261 and His-326 are involved in proton transfers during catalysis. Sensitivity to metal ion chelator and decreased affinities for metal ions with substitutions at His-261 and His-418 suggested that these two residues are candidates for zinc ion ligands.  相似文献   

19.
The three-dimensional structure of class pi glutathione S-transferase from pig lung, a homodimeric enzyme, has been solved by multiple isomorphous replacement at 3 A resolution and preliminarily refined at 2.3 A resolution (R = 0.24). Each subunit (207 residues) is folded into two domains of different structure. Domain I (residues 1-74) consists of a central four-stranded beta-sheet flanked on one side by two alpha-helices and on the other side, facing the solvent, by a bent, irregular helix structure. The topological pattern resembles the bacteriophage T4 thioredoxin fold, in spite of their dissimilar sequences. Domain II (residues 81-207) contains five alpha-helices. The dimeric molecule is globular with dimensions of about 55 A x 52 A x 45 A. Between the subunits and along the local diad, is a large cavity which could possibly be involved in the transport of nonsubstrate ligands. The binding site of the competitive inhibitor, glutathione sulfonate, is located on domain I, and is part of a cleft formed between intrasubunit domains. Glutathione sulfonate is bound in an extended conformation through multiple interactions. Only three contact residues, namely Tyr7, Gln62 and Asp96 are conserved within the family of cytosolic glutathione S-transferases. The exact location of the binding site(s) of the electrophilic substrate is not clear. Catalytic models are discussed on the basis of the molecular structure.  相似文献   

20.
cADPR is the novel second messenger that elicits calcium release from intracellular calcium stores and works independently of IP(3). In mammals, the ADP-ribosyl cyclase function is found in two membrane proteins, CD38 and BST-1/CD157. These enzymes, exposed extracellularly, bear cADPR hydrolase and NAD glycohydrolase activities. In spite of its functional importance, the structural basis of these enzymatic reactions remains elusive. We determined the crystal structures of the extracellular region of human BST-1 at atomic resolution in the free form and in complexes with five substrate analogues: nicotinamide, NMN, ATPgammaS, ethenoNADP, and ethenoNAD. The three-dimensional structural views of the reaction centre with these ligands revealed the mode of substrate binding and the catalytic mechanism of the multifunctional enzymatic reactions. In each catalytic cleft of the dimeric enzyme, substrates are recognized predominantly through van der Waals interactions with two tryptophan residues, and thereby the N-glycosidic bond of NAD is correctly exposed near a catalytic glutamate residue. Its carboxyl side-chain stabilizes the catalytic intermediate of the S(N)-1 type reaction. This conformation of the catalytic cleft also implies the mechanism of cyclization between the adenine base and the ribose. The three key residues are invariant among the sequences of BST-1, CD38, and Aplysia cyclase, and hence this substrate recognition mode and catalytic scheme appear to be common in the cyclase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号