首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterning the size and number of tooth and its cusps   总被引:1,自引:0,他引:1  
Cai J  Cho SW  Kim JY  Lee MJ  Cha YG  Jung HS 《Developmental biology》2007,304(2):499-507
Mice and rats, two species of rodents, show some dental similarities such as tooth number and cusp number, and differences such as tooth size and cusp size. In this study, the tooth size, tooth number, cusp size and cusp number, which are four major factors of the tooth patterning, were investigated by the heterospecific recombinations of tissues from the molar tooth germs of mice and rats. Our results suggest that the dental epithelium and mesenchyme determine the cusp size and tooth size respectively and the cusp number is co-regulated by the tooth size and cusp size. It is also suggested that the mesenchymal cell number regulates not the tooth size but the tooth number. The relationships among these factors in tooth patterning including micropatterning (cusp size and cusp number) and macropatterning (tooth size and tooth number) were analyzed in a reaction diffusion mechanism. Key molecules determining the patterning of teeth remains to be elucidated for controlling the tooth size and cusp size of bioengineered tooth.  相似文献   

2.
3.
The first embryonic lower mouse molar was used as a model system to investigate the effects of two retinoids, retinoic acid (RA) and a synthetic analogue, Ch55, on morphogenesis and cytodifferentiations in vitro. Exogenous retinoids were indispensable for morphogenesis of bud, cap and bell-stage molars in serum-free, chemically-defined, culture media. Transferrin and RA or transferrin and Ch55 acted synergistically in promoting morphogenesis from bud and cap-stage explants. Transferrin, per se, had no morphogenetic effect. Epithelial histogenesis, odontoblast functional differentiation and ameloblast polarization always occurred in RA-depleted explants. Comparison of the distributions of bromodeoxyuridine (BrdU) incorporation between explants cultured in the absence or presence of RA revealed that RA could modify the patterns of cell proliferation in the inner dental epithelium and dental mesenchyme. Inner dental epithelium cell proliferation is regulated by the dental mesenchyme through basement membrane-mediated interactions, and tooth morphogenesis is controlled by the dental mesenchyme. Laminin is a target molecule of retinoid action. Using a monospecific antibody, we immunolocalized laminin and/or structurally-related molecules sharing the laminin B chain in the embryonic dental mesenchyme and in the dental basement membrane and showed that RA could promote the synthesis or secretion of these molecules. Based on previous in situ hybridization data, it was speculated that CRABPs might regulate the effects of RA on embryonic dental cell proliferation. The fact that Ch55, a retinoid which does not bind to CRABPs, is 100 times more potent than RA in promoting tooth morphogenesis in vitro seems to rule out this hypothesis. On the other hand, the stage-specific inhibition of tooth morphogenesis by excess RA is consistent with the hypothesis that CRABPs might protect embryonic tissues against potentially teratogenic concentrations of free retinoids.  相似文献   

4.
5.
Abstract. Enamel formation in the developing tooth organ is the product of epithelial-mesenchymal interactions which result in the differentiation of ameloblasts, the secretion of enamel proteins, and the production of a highly organized extracellular matrix. The three-dimensional organization of enamel prisms is species-specific: irregular polygonshaped in rabbit and rectangular-shaped in mouse. We designed experiments to test the hypothesis that three-dimensional organization of enamel prism formation is genetically determined by epithelium; the prediction being that speciesspecific enamel prism pattern formation is expressed independent of mesenchymal instructions. Our strategy employs scanning electron microscopy to examine enamel prism patterns formed during rabbit and mouse tooth morphogenesis in situ and in vitro, and to then determine the specific tissue type required for regulating these patterns using heterotypic tissue recombinations. Morphometric analyses demonstrated that cap stage tooth organs cultured on the chick chorioallantoic membrane (CAM) formed enamel prisms equivalent to prism patterns observed for in situ controls. Heterotypic tissue recombinations, using cap stage molar organs, formed rabbit-like prisms with rabbit epithelium/mouse mesenchyme, and mouse-like prisms with mouse epithelium/rabbit mesenchyme. These results indicate that dental papilla mesenchyme has no apparent influence on enamel prism pattern formation. Enamel prism pattern appears to be genetically regulated by the inner enamel epithelium.  相似文献   

6.
In tooth morphogenesis, the dental epithelium and mesenchyme interact reciprocally for growth and differentiation to form the proper number and shapes of teeth. We previously identified epiprofin (Epfn), a gene preferentially expressed in dental epithelia, differentiated ameloblasts, and certain ectodermal organs. To identify the role of Epfn in tooth development, we created Epfn-deficient mice (Epfn-/-). Epfn-/- mice developed an excess number of teeth, enamel deficiency, defects in cusp and root formation, and abnormal dentin structure. Mutant tooth germs formed multiple dental epithelial buds into the mesenchyme. In Epfn-/- molars, rapid proliferation and differentiation of the inner dental epithelium were inhibited, and the dental epithelium retained the progenitor phenotype. Formation of the enamel knot, a signaling center for cusps, whose cells differentiate from the dental epithelium, was also inhibited. However, multiple premature nonproliferating enamel knot-like structures were formed ectopically. These dental epithelial abnormalities were accompanied by dysregulation of Lef-1, which is required for the normal transition from the bud to cap stage. Transfection of an Epfn vector promoted dental epithelial cell differentiation into ameloblasts and activated promoter activity of the enamel matrix ameloblastin gene. Our results suggest that in Epfn-deficient teeth, ectopic nonproliferating regions likely bud off from the self-renewable dental epithelium, form multiple branches, and eventually develop into supernumerary teeth. Thus, Epfn has multiple functions for cell fate determination of the dental epithelium by regulating both proliferation and differentiation, preventing continuous tooth budding and generation.  相似文献   

7.
BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development   总被引:6,自引:0,他引:6  
The development of many organs depends on sequential epithelial-mesenchymal interactions, and the developing tooth germ provides a powerful model for elucidating the nature of these inductive tissue interactions. In Msx1-deficient mice, tooth development arrests at the bud stage when Msx1 is required for the expression of Bmp4 and Fgf3 in the dental mesenchyme (Bei, M. and Maas, R. (1998) Development 125, 4325-4333). To define the tissue requirements for Msx1 function, we performed tissue recombinations between wild-type and Msx1 mutant dental epithelium and mesenchyme. We show that through the E14.5 cap stage of tooth development, Msx1 is required in the dental mesenchyme for tooth formation. After the cap stage, however, tooth development becomes Msx1 independent, although our experiments identify a further late function of Msx1 in odontoblast and dental pulp survival. These results suggest that prior to the cap stage, the dental epithelium receives an Msx1-dependent signal from the dental mesenchyme that is necessary for tooth formation. To further test this hypothesis, Msx1 mutant tooth germs were first cultured with either BMP4 or with various FGFs for two days in vitro and then grown under the kidney capsule of syngeneic mice to permit completion of organogenesis and terminal differentiation. Previously, using an in vitro culture system, we showed that BMP4 stimulated the growth of Msx1 mutant dental epithelium (Chen, Y., Bei, M. Woo, I., Satokata, I. and Maas, R. (1996). Development 122, 3035-3044). Using the more powerful kidney capsule grafting procedure, we now show that when added to explanted Msx1-deficient tooth germs prior to grafting, BMP4 rescues Msx1 mutant tooth germs all the way to definitive stages of enamel and dentin formation. Collectively, these results establish a transient functional requirement for Msx1 in the dental mesenchyme that is almost fully supplied by BMP4 alone, and not by FGFs. In addition, they formally prove the postulated downstream relationship of BMP4 with respect to Msx1, establish the non-cell-autonomous nature of Msx1 during odontogenesis, and disclose an additional late survival function for Msx1 in odontoblasts and dental pulp.  相似文献   

8.
We have analyzed the expression of early growth response gene (Egr-1) by mRNA in situ hybridization during mouse embryonic tooth development and in experimental recombinations of dental epithelium and mesenchyme. Egr-1 was transiently and recurrently expressed both in epithelial and mesenchymal cells starting from day 13 of gestation and up to 4 days after birth. The expression correlated with developmental transition points of dental mesenchymal and epithelial cells suggesting a role for Egr-1 in sequential determination and differentiation of cells. In recombination cultures of early dental epithelium and mesenchyme Egr-1 RNA was localized at the epithelial-mesenchymal interface in mesenchymal cells, and in two cases also in epithelial cells. These data indicate that Egr-1 expression may be regulated by epithelial-mesenchymal interactions when they are specific enough to initiate differentiation. We have also analyzed by in situ hybridization whether Wilms' tumour-1 gene (wt-1) is expressed in the developing tooth as it was proposed on the bases of in vitro studies that it may inhibit Egr-1 expression. No wt-1 expression was detected at any stage of tooth development showing that wt-1 is not obligatory for regulation of Egr-1 expression.  相似文献   

9.
10.
It is believed that mouse dentition is determined by a prepatterning of the oral epithelium into molar (proximal) and incisor (distal) regions. The LIM homeodomain protein Islet1 (ISL1) is involved in the regulation of differentiation of many cell types and organs. During odontogenesis, we find Islet1 to be exclusively expressed in epithelial cells of the developing incisors but not during molar development. Early expression of Islet1 in presumptive incisor epithelium is coincident with expression of Bmp4, which acts to induce Msx1 expression in the underlying mesenchyme. To define the role of ISL1 in the acquisition of incisor shape, we have analysed regulation of Islet1 expression in mandibular explants. Local application of bone morphogenetic protein 4 (BMP4) in the epithelium of molar territories either by bead implantation or by electroporation stimulated Islet1 expression. Inhibition of BMP signalling with Noggin resulted in a loss of Islet1 expression. Inhibition of Islet1 in distal epithelium resulted in a loss of Bmp4 expression and a corresponding loss of Msx1 expression, indicating that a positive regulatory loop exists between ISL1 and BMP4 in distal epithelium. Ectopic expression of Islet1 in proximal epithelium produces a loss of Barx1 expression in the mesenchyme and resulted in inhibition of molar tooth development. Using epithelial/mesenchymal recombinations we show that at E10.5 Islet1 expression is independent of the underlying mesenchyme whereas at E12.5 when tooth shape specification has passed to the mesenchyme, Islet1 expression requires distal (presumptive incisor) mesenchyme. Islet1 thus plays an important role in regulating distal gene expression during jaw and tooth development.  相似文献   

11.
The aim of the present study was to investigate the spatial distribution of Ca and P in dentin and enamel of developing first (M1) and second (M2) maxillary hamster molars (age: 3-5 days) in comparison with cultured molars. For culturing the germs were dissected from 3-day-old hamsters and incubated for 1 and 2 days, respectively, in a modified BGJb medium. Electron probe X-ray measurements were carried out on 3 regions extending in a vertical axis from cusp tip over cusp middle to cusp base next to the cervical loop region. Neither the in vivo nor the in vitro group was statistically different in the Ca and P concentration in the regions of dentin. In both groups the measurements in enamel showed a gradient with an increase in Ca and P from enamel surface towards dentin-enamel junction and a gradient with an increase from cusp base towards cusp tip. Direct comparison of the in vivo group with the in vitro group did not demonstrate a statistical difference between the mineral content of the 4-day-old germs and the 1-day culture germs, respectively the 5-day-old germs and the 2-day culture germs. The results indicate a high correspondence between the mineralization process of in vitro and in vivo tooth germ development.  相似文献   

12.
13.
Recently we demonstrated that non-cycling, cap-stage, mouse molar inner dental epithelial (IDE) cells corresponding to the primary enamel knot (EK) area underwent a coordinated temporo-spatial patterning leading to their patchy irregular segregation at the tips of the forming cusps. These non-cycling cells were suggested to perhaps represent the organizers of the morphogenetic units (OMU), the cusps. The present study has analyzed the regenerative capacity of halved cap-stage first lower mouse molars through three dimensional (3D) reconstructions. Partial regeneration of the anterior half and possible complete regeneration of the posterior half were documented. Using BrdU (5-bromo-2'-deoxyuridine) labeling and 3D reconstructions of the IDE, we have correlated the patterns of cusp regeneration with the distribution of BrdU negative IDE cells. These data support a morphogenetic role for the non-cycling IDE cells.  相似文献   

14.
Summary Mandibular first molars from 17-d-old mouse embryos were cultured in vitro for 2 to 4 d by a simple, disposable, improved floatation method. This method consisted of using a 24-well multidish and a plastic culture chamber with a membrane filter. The improved floatation method, as well as our previous method, was capable of the three-dimensional development of tooth germs. Cytodifferentiation of odontoblasts and ameloblasts and formation of extracellular matrices were accelerated by the present culture system, in comparison with our previous method. All the molars cultivated by this method were very similar in morphology to in vivo. On Day 2 of culture the terminal cytodifferentiation of odontoblasts and the formation of predentin were ascertained in the bucco-lingual sections of the cultured molars. A thick layer of predentin was formed at the tip of the cusp and gradually decreased toward the cervical loop and the fissure between the buccal and ligual cusps. On Day 4 in vitro, secretory ameloblasts produced enamel matrix, and the mineralized enamel showed prismatic structure very similar to that in vivo. Dentin and predentin also were normal in ultrastructure. The extracellular matrices (enamel, dentine, and predentin) were formed in line with the pattern of the cusp and the formation of matrices normally started at the tip of the cusp. We conclude that the three-dimensional development of whole tooth germs in vitro may be very important for normal expression of the developmental program intrinsic to mouse embryonic molars.  相似文献   

15.
To assess the requirement for specific or possibly non-specific epithelial instructions for mesenchymal cell differentiation, we designed studies to evaluate and compare homotypic with heterotypic tissue recombinations across vertebrate species. These studies further tested the hypothesis that determined dental papilla mesenchyme requires epithelial-derived instructions to differentiate into functional odontoblast cells using a serumless, chemically-defined medium. Theiler stage 25 C57BL/6 or Swiss Webster cap stage mandibular first molar tooth organs or trypsin-dissociated, homotypic epithelial-mesenchymal tissue recombinants resulted in the differentiation of odontoblasts within 3 days. Epithelial differentiation into functional ameloblasts was observed within 7 days. Trypsin-dissociated and isolated mesenchyme did not differentiate into odontoblasts under these experimental conditions. Heterotypic recombinants between quail Hamburger-Hamilton stages 22–26 mandibular epithelium and Theiler stage 25 dental papilla mesenchyme routinely resulted in odontoblast differentiation within 3 days in vitro. Odontoblast differentiation and the production of dentine extracellular matrix continued throughout the 10 days in organ culture. Ultrastructural observations of the interface between quail and mouse tissues indicated the reconstitution of the basal lamina as well as the maintenance of an intact basal lamina during 10 days in vitro. Quail epithelial cells did not differentiate into ameloblasts and no enamel extracellular matrix was observed. These results show that quail mandibular epithelium can provide the required developmental instructions for odontoblast differentiation in the absence of serum or other exogenous humoral factors in a chemically-defined medium. They also suggest the importance of reciprocal epithelial-mesenchymal interactions during epidermal organogenesis.  相似文献   

16.
Tight junctions might play a role during tissue morphogenesis and cell differentiation. In order to address these questions, we have studied the distribution pattern of the tight junction-associated proteins ZO-1, ZO-2, ZO-3 and occludin in the developing mouse tooth as a model. A specific temporal and spatial distribution of tight junction-associated proteins during tooth development was observed. ZO-1 appeared discontinuously in the cell membrane of enamel organ and dental mesenchyme cells. However, endothelial cells of the dental mesenchyme capillaries displayed a continuous fluorescence at the cell membrane. Inner dental epithelium first showed an evident signal for ZO-1 at the basal pole of the cells at bud/cap stage, but ZO-1 was accumulated at the basal and apical pole of preameloblast/ameloblasts at late bell stage. Surprisingly, in the incisor ZO-1 decreased as the inner dental epithelium differentiated, and was re-expressed in secretory and mature ameloblasts. On the contrary, ZO-2 was confined to continuous cell-cell contacts of the enamel organ in both molars and incisors. The lateral cell membrane of inner dental epithelial cells was specifically ZO-2 labeled. However, ZO-3 was expressed in oral epithelium whereas dental embryo tissues were negative. In addition, occludin was hardly detected in dental tissues at the early stage of tooth development, but was distributed continuously at the cell membrane of endothelial cells of ED19.5 dental mesenchyme. In incisors, occludin was detected at the cell membrane of the secretory pole of ameloblasts. The occurrence and relation during tooth development of tight junction proteins ZO-1, ZO-2 and occludin, but not ZO-3, suggests a combinatory assembly in tooth morphogenesis and cell differentiation.  相似文献   

17.
The patterning cascade model of tooth morphogenesis has emerged as a useful tool in explaining how tooth shape develops and how tooth evolution may occur. Enamel knots, specialized areas of dental epithelium where cusps initiate, act as signaling centers that direct the growth of surrounding tissues. For a new cusp to form, an enamel knot must form beyond the inhibition fields of other enamel knots. The model predicts that the number and size of cusps depends on the spacing between enamel knots, reflected in the spacing between cusps. Recently, work by our group demonstrated that the model predicted Carabelli trait expression in human first molars. Here we test whether differences in Carabelli trait expression along the molar row can also be predicted by the model. Crown areas and intercusp distances were measured from dental casts of 316 individuals with a digital microscope. Although absolute cusp spacing is similar in first and second molars, the smaller size and more triangular shape of second molars results in larger cusp spacing relative to size and, likely, less opportunity for the Carabelli trait to form. The presence and size of the hypocone (HY) and a range of small accessory cusps in a larger sample of 340 individuals were also found to covary with the Carabelli trait in a complex way. The results of this study lend further support to the view that the dentition develops, varies, and evolves as a single functional complex. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Morphogenesis of embryonic organs is regulated by epithelial-mesenchymal interactions associating with changes in the extracellular matrix (ECM). The response of the cells to the changes in the ECM must involve integral cell surface molecules that recognize their matrix ligand and initiate transmission of signal intracellularly. We have studied the expression of the cell surface proteoglycan, syndecan, which is a matrix receptor for epithelial cells (Saunders, S., M. Jalkanen, S. O'Farrell, and M. Bernfield. J. Cell Biol. In press.), and the matrix glycoprotein, tenascin, which has been proposed to be involved in epithelial-mesenchymal interactions (Chiquet-Ehrismann, R., E. J. Mackie, C. A. Pearson, and T. Sakakura. 1986. Cell. 47:131-139) in experimental tissue recombinations of dental epithelium and mesenchyme. Our earlier studies have shown that in mouse embryos both syndecan and tenascin are intensely expressed in the condensing dental mesenchyme surrounding the epithelial bud (Thesleff, I., M. Jalkanen, S. Vainio, and M. Bernfield. 1988. Dev. Biol. 129:565-572; Thesleff, I., E. Mackie, S. Vainio, and R. Chiquet-Ehrismann. 1987. Development. 101:289-296). Analysis of rat-mouse tissue recombinants by a monoclonal antibody against the murine syndecan showed that the presumptive dental epithelium induces the expression of syndecan in the underlying mesenchyme. The expression of tenascin was induced in the dental mesenchyme in the same area as syndecan. The syndecan and tenascin positive areas increased with time of epithelial-mesenchymal contact. Other ECM molecules, laminin, type III collagen, and fibronectin, did not show a staining pattern similar to that of syndecan and tenascin. Oral epithelium from older embryos had lost its ability to induce syndecan expression but the presumptive dental epithelium induced syndecan expression even in oral mesenchyme of older embryos. Our results indicate that the expression of syndecan and tenascin in the tooth mesenchyme is regulated by epithelial-mesenchymal interactions. Because of their early appearance, syndecan and tenascin may be used to study the molecular regulation of this interaction. The similar distribution patterns of syndecan and tenascin in vivo and in vitro and their early appearance as a result of epithelial-mesenchymal interaction suggest that these molecules may be involved in the condensation and differentiation of dental mesenchymal cells.  相似文献   

19.
BACKGROUND INFORMATION: Previous studies have indicated that over-activation of the wingless interaction site (Wnt)/β-catenin signalling pathway has important implications for tooth development, at the level of cell differentiation and morphology, as well as for the production of supernumerary teeth. Here, we provide evidence for a crucial role of this signalling pathway during the stage of tooth morphogenesis. We have developed an in vitro model consisting of 14.5-day-old mouse embryo first molars, in which the Wnt pathway is overactivated by the glycogen synthase kinase-3 inhibitor 6-bromoindirubin-3'-oxime (BIO; 20 μM). RESULTS: We found that over-activation of the Wnt/β-catenin pathway delayed the differentiation and growth of the inner dental epithelium. In addition, in contrast to controls in which Nestin protein expression was restricted to differentiated odontoblasts, in BIO-treated molars, Nestin expression spread through sub-odontoblastic cellular layers. This alteration appears to be related to: (i) the over-expression of Bmp4 in the same region, (ii) the delay in odontoblast precursor cell differentiation and (iii) increased proliferation of mesenchymal cells. Furthermore, treatments longer than 6 days induced the malformation of typical dental structures and led to a total lack of cell differentiation. Finally, over-activation of the Wnt route during odontogenesis resulted in adult teeth which presented altered size, morphology and mineralisation. CONCLUSIONS: Our results indicate that Wnt/β-catenin over-activation during tooth morphogenesis is sufficient to cause dramatic alterations in the adult tooth, by delaying cellular differentiation and stimulating proliferation of the dental mesenchyme of developing teeth.  相似文献   

20.
Bone morphogenetic proteins (BMPs) play important roles in tooth development. However, their expression has not been studied in miniature pigs, which have many anatomical similarities in oral and maxillofacial region compared to human. This study investigated BMP2/4/7 expression patterns during deciduous molar development in miniature pigs on embryonic days (E) 40, 50, and 60. The mandibles were fixed, decalcified, and embedded before sectioning. H&E staining, immunohistochemistry, in situ hybridization using specific radionuclide-labeled cRNA probes, and real-time PCR were used to detect the BMP expression patterns during morphogenesis of the third deciduous molar. H&E staining showed that for the deciduous third molar, E40 represented the cap stage, E50 represented the early bell stage, and E60 represented the late bell stage or secretory stage. BMP2 was expressed in both the enamel organ and in the dental mesenchyme on E40 and E50 and was expressed mainly in pre-odontoblasts on E60. BMP7 expression was similar to BMP2 expression, but BMP7 was also expressed in the inner enamel epithelium on E60. On E40, BMP4 was expressed mainly in the epithelium, with some weak expression in the mesenchyme. On E50, BMP4 expression was stronger in the mesenchyme but weaker in the epithelium. On E60, BMP4 was expressed mainly in the mesenchyme. These data indicated that BMP2/4/7 showed differential spatial and temporal expression during the morphogenesis and odontogenesis of deciduous molars, suggesting that these molecules were associated with tooth morphogenesis and cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号